

(Not just) Backplane transmission options

Uli, Sam, Yuri

So far

- Preliminary design for phase 1 had been suggested
 - Extract topological information from digital processors (firmware upgrade)
 - Replace CMMs by serialiser w. fibre output
 - Up to 160 Mb/s backplane data rate
 - 3 Gb/s optical out
 - Aggregate bandwidth at merger slot 64 Gb/s
 - Total bandwidth of JEP and CP ~700 Gb/s
 - Two-stage top level calorimeter processor (quadrant)

?

- Hard facts on backplane bandwidth limits
- Detailed algorithms
- Simulation
- Muons

Recently...

- Some backplane results:
 - 160 Mb/s possible (clock forward)
 - ... even with CMM (TTC clock, Richard, CPM only)
 - Higher rates possible only with sink termination
- Some simulation results
- (non-)schedule seems to be sliding
- Technology moves on
- BTW: are we really sure the current trigger scheme is good enough for design luminosity (phase 0) ?
→ Difficult to judge as long as there are no collisions at all !

What can we do by firmware only ? – backplane

- We can be rather sure that 80 Mb/s backplane operation suits current CMMs
- 120 Mb/s would probably require clean external clock, due to Virtex-E DLL limitations :
 - Spare differential inputs in the back of a CMM
 - SFP o/e transceiver cheap and low jitter
 - Signal integrity seems ok even for 160 Mb/s

At an elevated data rate the data windows shrink due to known jitter and walk from TTCdec (TTCrx).

→ Need a per-slot phase optimization at source

- JEP: clkdes1/2 are in use. Could be made available (major f/w mod on input processor), s/w
- CP: probably difficult, clkdes2 used

And on to the CTP

- Probably quite some spare bandwidth on the CMM outputs (80 Mb/s +)
- LVDS signalling rate depends on cable length and cable properties, double rate should be ok.
- Conversion to optical rather simple if DC balanced (firmware, SNAP12/MPO : \$) O/E adapter @ CTP
- Need detailed assessment of CMM capabilities
- Nothing known about CTP inputs (?)

Algorithms : just an example...

- Most algorithms of which we expect performance gains require massive increase in data rate throughout the system → not for phase 0
- Leading jets angle cuts require two most energetic ROIs only:
 - Moderate bandwidth requirement
 - Need monotonous energy scale
 - Sort algorithm required at all stages
 - JEM: 2 of 8
 - Crate merger : 2 of 32
 - System merger: 2 of 4
 - Calculation of angle and thresholding (LUT)

Phase 1

- Backplane
 - CP rates probably limited to 160 Mb/s
 - JEP possibly higher if required (termination)
- Merger links (optical)
 - Xilinx Virtex-5/6 stuck at 6.5 Gb/s (2010/11)
 - Aggregate bandwidth ~200 Gb/s per chip
 - No information on Virtex-6 HXT (10 Gb/s)
- Merger could be ATCA or similar form factor
- Optical components for high density processors available
 - High density blind mate opto backplane connectors
 - Splitters
 - MPO fanout
 - (Optical backplanes too exotic)

Plans

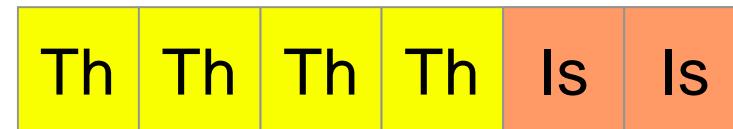
- Improve performance of current system (firmware)
- Devise and simulate algorithms for phase 1
- Make optimum use of existent demonstrators
 - Stockholm link tester generate 3.2 Gb/s optical
 - BLT serialise backplane data to 6.5 Gb/s optical
 - Possibly use as receiver temporarily
- Build a demonstrator global merger with 6.5 Gb/s links
- Design for wide choice of algorithms:
aim to feed maximum of data into single point
→ maximum link density, high performance FPGAs
- Discuss timeline → decide on
 - Form factor (Yuri : single box)
 - Amount of processing power required
 - Signal replication scheme
 - Extensive use of optical technology
 - Replication at source
 - Electrical multi-Gb/s link replication at sink

To Do – Who – What ?


- Mainz interested in
 - Firmware-based improvements on current JEMs
 - 6.5 + Gb/s FPGA based link technology
 - Optical : passive replication – blind mate connector
 - Ready to work on global merger demonstrator
 - Not yet given up on possible JEM rebuild
- MSU: interested to join the GM demonstrator activity
 - output from “VHDL framework”
 - data formats, algorithm implementation
- Stockholm interested in
 - Jet algorithm firmware upgrade current JEMs
 - 3.2 Gb/s 10 Gbit Enet based link technology
 - Global merger firmware development
 - Global merger hardware development

What data do we put in RTDP?

- Assume 160 Mbit/s rate from CPMs
 - 24 lines/CPM/CMM at 160 Mbit/s
 - 8 ROIs/CPM/CMM
 - \Rightarrow 12 bits / cluster ROI
 - nominally 18 (2 position + 16 thresholds)
- If jet CMM also runs at 160 Mbit/s
 - \Rightarrow 12 bits / jet ROI
 - nominally 10 (2 position + 8 thresholds)
- Suggestion: try to encode more ROIs in fewer bits


Alternative ROI encoding

CP subsystem ROI

15 EM ordered energy thresholds
+ 3 isolation thresholds

(note: no fine position!)



15 tau energy thresholds
+ 3 isolation thresholds

Jet subsystem

2 position
bits

15 thresholds
 0.8×0.8

7 thresholds
 0.6×0.6

7 thresholds
 0.4×0.4

Implications of alternative encoding

- No fine location information for em/tau clusters
 - position grid 0.4 resolution
 - Same as jet ROIs
- Ordered threshold energies
 - we know energy range of the feature
 - i.e. greater than X GeV, less than Y GeV