

L1Calo – towards phase II

Mainz upgraders :

B.Bauss, V.Büscher, R.Degele, A.Ebling, W.Ji, C.Meyer, S.Moritz, <u>U.Schäfer</u>, C.Schröder, E.Simioni, S.Tapprogge

- Current L1Calo
- Some technicalities : Latency and data duplication
- Strawman for phase 2

Prologue: the L1Calo trigger rates...

Simulations suggest horrible increase of calorimeter trigger rates with rising luminosity for current trigger scheme. What can we actually do about that ?

EM Triggers

- Iongitudinal sampling from LAr may help
- higher transverse granularity information may help
- needs study we don't yet know what is most useful
- will impact L1Calo requirements for LAr ROD

Jets

- not limited by trigger tower granularity so no help here
- but would like to separate cleanly from EM triggers (not currently the case)

Topology

correlate Rols to pick out physics signatures

e.g.

ATLAS Trigger / current L1Calo

Current and future L1Calo

- Analog signals transmitted off the detector (0.1×0.1) η,ϕ
- Pre-Processor: ADCs, digital filters, baseline/gain/linearity, bunch crossing identification
- Digital processors:
 - Sliding windows for jet and em cluster extraction, data consolidation by thresholding and counting objects
 - Global results determined by summation on daisy-chained merger modules (CMMs)
 - Final results of object count and total and missing ${\sf E}_{\sf T}$ sent to Central Trigger Processor
- Phase 0/1 (i.e. from 2013/14 !):
 - Improve pre-processing (new MCMs)
 - Increase digital processor backplane bandwidth to extract topology, replace mergers (CMM++)
 - Add topological processor stage, include muon data
- Phase 2 : complete replacement of L1Calo

Latency, data duplication, data paths ...

Total latency currently limited to c. 2.5 µsec

- Cables
- Serialisation / de-serialisation on module/chip boundaries
- Processing

Sliding windows algorithms require duplication of data across processor module and crate boundaries

- All L1Calo real-time data transmitted electrically : analogue, 480 Mb/s serial, 40/80/160Mbps parallel
- Data duplication by mixture of forward duplication (zero latency) and cross-module communication (1.x BX +)

The horror lurks behind...

Jet/Energy processor

Pre-processor

Jet/En. processor

Upgrade : Go optical

Phase 0/1/2 upgrades will be based on optical interconnect

- Latency issues will not disappear by miracle
- Accept inherently higher latency per high speed link
- → Increase system density by use of FPGA-internal Multi-Gigabit Transceivers (MGTs)
- → Partition the system such that excessive deserialization/re-serialization is avoided
- \rightarrow Optimize the data replication scheme
- \rightarrow Explore options for latency reduction on the FPGA

Data replication

Do not share any data between modules of same subsystem to avoid additional SerDes latency

Forward data replication only:

- Duplication at source
 - Mirror a link
 - Assemble a different stream optimised for the replication
- Optical splitter (fibre coupler)

Phase 2

Latency impact on Phase 2 design...

- 3.2 µs latency insufficient for track trigger
- Probably needs seeding
- Current favoured solution is a two stage system L0 and L1
- Level 0
 - low latency, synchronous ("real-time") trigger system
 - input to LOCalo goes digital (LAr and Tile)
 - includes Topo processing + muons
 - send Rols to region-based track trigger
 - L0 accept at ~500 kHz (?)
- Level 1
 - includes calorimeter, muon and track trigger
 - might run asynchronously
 - higher latency (to be defined)
 - possibility of HLT-like algorithms

eventually ... Phase 2 !

« Once the calorimeter readout is replaced ... in 20xx ... »

- High granularity trigger data provided on optical links
- New sliding windows processor with optical interfaces only
- Synchronous low-latency L0 plus asynchronous L1

...as of last week (R.Middleton)

Cont'd...

- ROD
 - LOCaloFex -> form mini-towers, depth samples, BCID, etc
 - L1CaloFex -> fine granularity information
- LOCaloFex (feature extraction)
 - use mini-towers & depth information
 - sliding window algorithms, EM, Tau, Jet, Et partial sums
- LOTopo
 - inputs = LOCalo+LOMuon
 - compute topological triggers from features
- L0 CTP --> L0A (500kHz)
 - apply LO menu, prescales, deadtime, etc.
- L1CaloFex
 - asynchronous (?) 500kHz
 - refine using "full" calorimeter data
- L1Topo
 - compute topological triggers from REFINED features
 - inputs = L1Calo+L1Track+L1Muon
- L1 CTP --> L1A (100kHz)
 - apply L1 menu, prescales, deadtime, etc.

PP

From 2013/4 ?

• Some (almost) final words

https://indico.cern.ch/getFile.py/access?subContId=3&contr ibId=2&resId=1&materialId=slides&confId=133899

Some current upgrade activities in Mainz

- Simulations of topological algorithms at high luminosities (10³⁴ cm⁻²s⁻¹), high pile-up
- Simulation and implementation of the algorithms in VHDL
- Improvements on VHDL code for current processors
- Design of demonstrator modules for phases 0/1 and 2
 → Generic Opto Link Demonstrator
 - Topological processor (0/1/2)
 - Phase-2 Level-0 sliding windows processor
- Latency optimization
 - Data replication schemes
 - FPGA on-chip MGT operation modes and fabric interfaces

