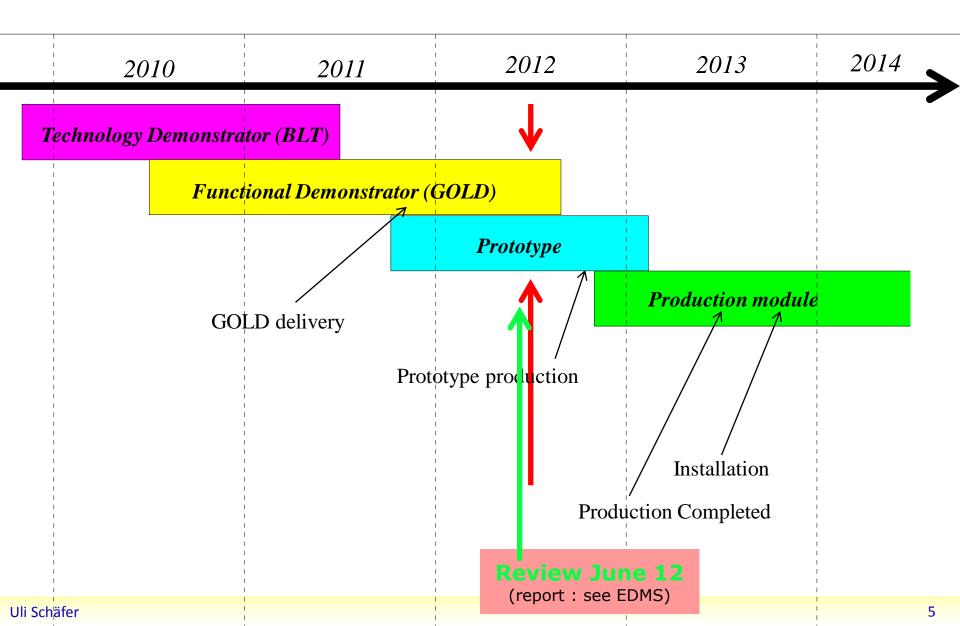

Topology System

B.Bauß, V.Büscher, W.Ji, U.Schäfer, A.Reiß, E.Simioni, S.Tapprogge, V.Wenzel

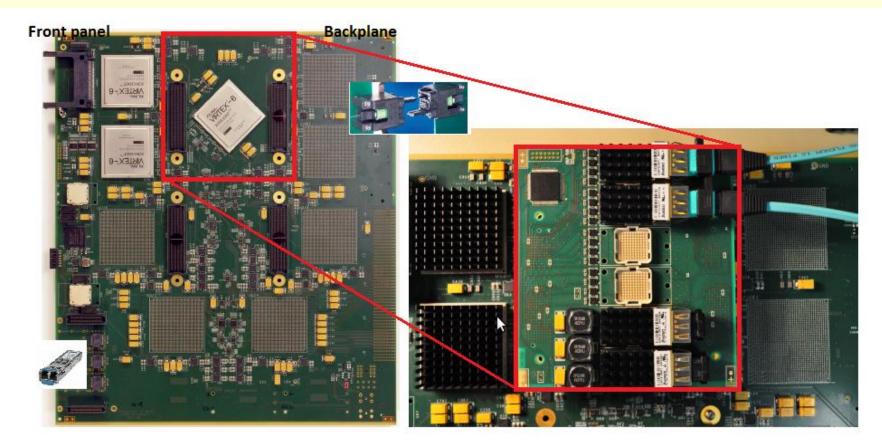
Topology 2013/14 (RTDP)

Topology Processor

To provide a maximum of flexibility for applying topological trigger criteria


- All Level-1 topo trigger signals into a single module
- Allow to correlate all trigger object types within full solid angle
 - e/m clusters, tau
 - Jets
 - Missing Energy
 - Small volume of muon signals from 2014
- Ample logic resources to run many algorithms in parallel

 Option to run separate algorithms on more than one topology module in parallel


Topo processor features

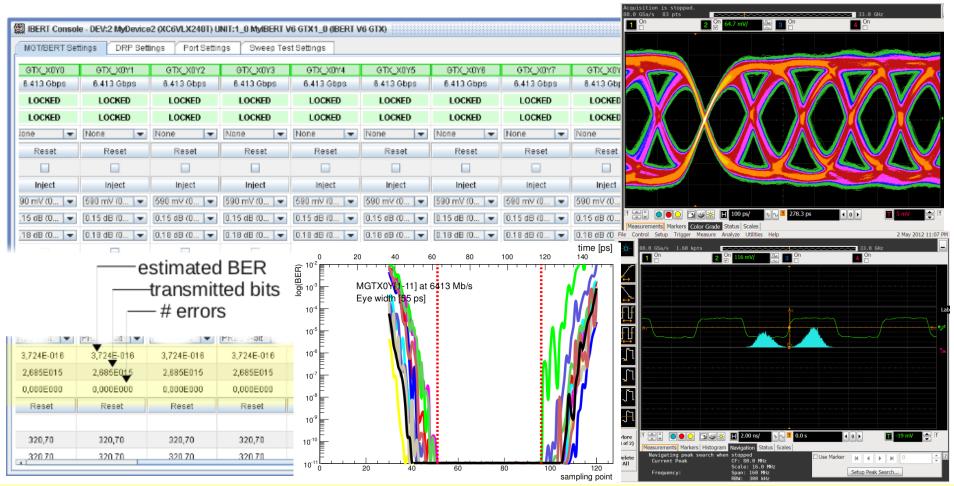
- AdvancedTCA form factor
- High input bandwidth (@ 6.4Gb/s baseline input rate, 2014)
 - Electrons, tau, jets, MET : 553 Gb/s
 - Muons 267 Gb/s
 - Total aggregate bandwidth 820 Gb/s
- Low processing latency on real-time path
- On-FPGA multi-gigabit links (MGTs)
- High density 12-channel opto transceivers (miniPODs)
- Fibre bundles from L1Calo mergers (CMXes)
- Fibre bundle and low latency LVDS into CTPcore
- Well prepared for phase 1:
 - accept line rates above 6.4Gb/s from future processors (FEXes, muons)
 - Employ zero suppression

Topology Processor Schedule

Functional Demonstrator : "GOLD"

- Fibre input from the backplane (MTP-CPI connectors)
- 10Gb/s 12-channel industry standard o/e converters on mezzanine
- High performance FPGAs (XC6VLX240T) with multiple 6.4Gb/s transceivers
- Real-time output via opto links on the front panel

Uli Schäfer


GOLD test results and plans

Characterization of Optical Links

• "MGT/AVAGO" settings

Bit Error Rate (BER) < 10^{-16} @6.4GBits/s / 12 channels

(conditions on GOLD are tougher, mezzanine connectors and long traces)

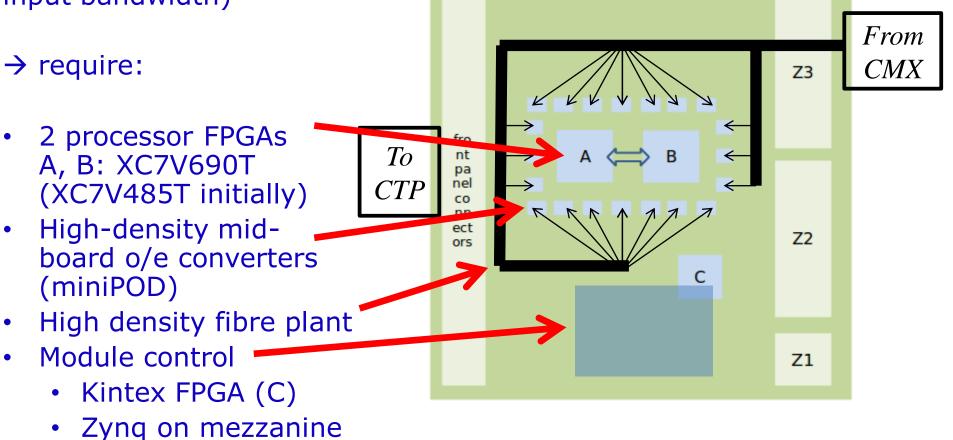
GOLD test results and plans

Current Algorithm Implementation Efforts

- Implementation of dphi Leading Jet Algorithm exists for simulation and hardware in the GOLD
- First estimate of logic usage: about 10% of (small) XC6VLX240T
- Implement toy data source for dphi alg.
 - **Determine Latency**
 - Logic Usage

Uli Schäfer

- PMA loop back test
- Prepare existing FW for Virtex-7 as far as possible (L1Topo)
- We continue to use GOLD while prototype is being built

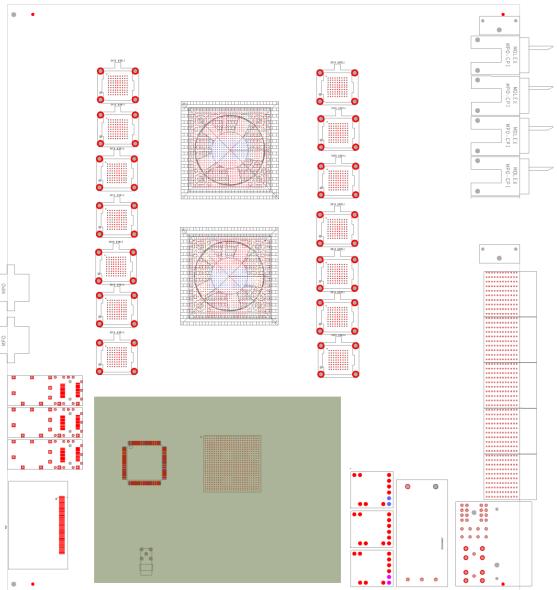

Name	Value	150 ns 160 ns 170 ns
datain9[95:0]	000011010111000000000001000000010000000	(00001101011100000000000100000001)
datain10[95:0]	000011110111000000100001000000110000000	(000011110111000000100001000000011)
datain11[95:0]	000011010111000000000000000000000000000	(00001101011100000000000100000001)
datain12[95:0]	000011010111000000000000000000000000000	(00001101011100000000000000000000000000
datain13[95:0]	00001111011100000010000100000011000000100	00001111011100000010000100000011
datain14[95:0]	000011010111000000000000000000000000000	00001101011100000000000100000001
datain15[95:0]	000011010111000000000000000000000000000	000011010111000000000000000000000000000
datain16[95:0]	00001111011100000010000100000011000000100	000011110111000000100001000000011
datain17[95:0]	000011010111000000000000000000000000000	000011010111000000000000000000000000000
datain18[95:0]	000011010111000000000000000000000000000	000011010111000000000000000000000000000
datain19[95:0]	00001111011100000010000100000011000000100	000011110111000000100001000000011

L1Topo prototype - post review

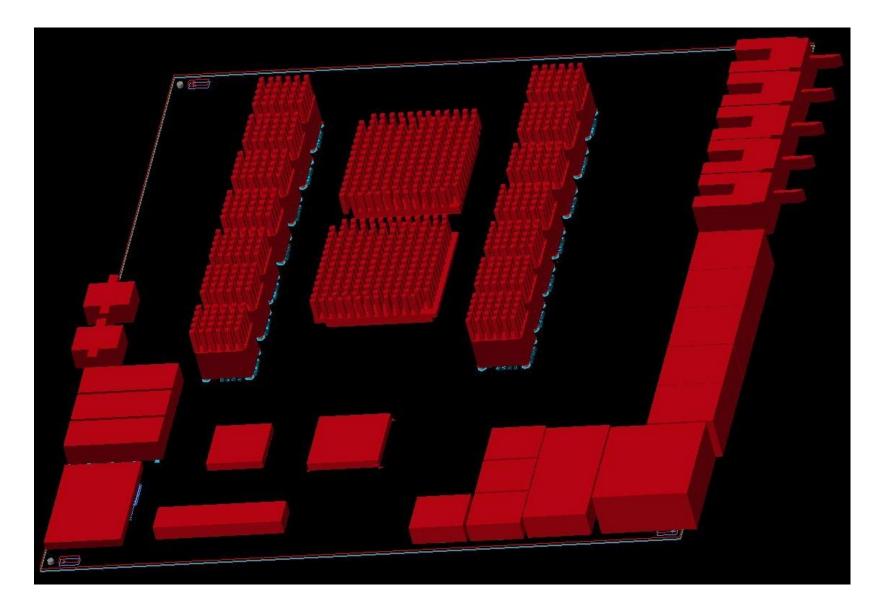
Design goal :

Keep compact for signal integrity, use largest available FPGAs (processing power, input bandwidth)

Form factor : advancedTCA


Post review : some system level aspects

- Require ATCA crate, probably physically close to CTP
- Full ATCA compliance including IPMC and base interface on mezzanine module
- Real-time path:
 - Baseline 6.4Gb/s inputs, flexible wrt. rate selection, due to multiple reference clock trees
 - No on-module data duplication, incoming data might have to be duplicated at source, if required
 - Low latency LVDS path to CTP to complement optical path
- Module control
 - via VMEbus bridge during initial module development phase
 - via embedded processor (Zynq) / Ethernet / base interface eventually
- DAQ and ROI interface
 - up to 12 opto fibres (miniPOD)
 - Hardware to support both L1Calo style ROD interface, and embedded ROD / S-Link interface


Hardware status - floor plan, so far...

RTDP:

- 48-way opto connectors
- 14 miniPODs / optical in
- add clock trees to support multiple input rates
- 2 processors XC7V690T
- To CTP: miniPOD and low latency LVDS
- Control etc.:
- XC7K325T and XC7Z0XX
- Add SD-card for configuration and boot
- Add memory
- Some components not yet placed : CTP / spare PODs...

... and in 3-d

Options and Effort

Impact of architectural decisions (as discussed at review) on f/w and s/w:

- Embedded ROD vs. use of L1Calo ROD (pre phase 1)
 - Effort required for embedded ROD cannot be quantified yet
 - JEM DAQ interface being converted to L1Topo needs (low effort)
 - DAQ bandwidth dominated by CMX data : Zero suppressed format @ 100kHz L1A $\rightarrow \sim 1/2$ L1Calo ROD channel worth of data per bunch tick being read out
- Ethernet based control / embedded processor / IPbus
 - Basic access via serialised VMEbus is available anyway, is in use on GOLD
 - "IPbus" or embedded processor supported by h/w, require s/w & f/w effort

Firmware :

- Real-time code being developed on GOLD (MGT and some topo algorithms)
- Register map
- DAQ
- Diagnostics and monitoring (playback / spy functionality)
- IPbus firmware (for FPGA-based Ethernet option)

Software :

- Some basic software access for h/w tests
- HDMC register description (in case of register mapped access)
- General software framework for Ethernet based control
- (Embedded ARM/Linux **or** IPbus specific) **and** IPMC controller software

S/W development eased considerably if done within L1Calo infrastructure

Uli Schäfer

Summary

L1Topo functional demonstrator (GOLD):

- High-speed o/e data paths successfully tested
- Parameters optimized at 6.4 Gb/s
- Large bit-error free windows
- Further optimization on high speed link parameters and performance (latency) of algorithms in hardware on-going

L1Topo Prototype:

- Design ready, reviewed, schematic capture in progress
- A few post-review modifications
- Some mods go onto mezzanine module
- Critical components ordered / expected on time for production
- Considerable effort to go into s/w, f/w, system-level integration
- On schedule for installation during shutdown 13/14