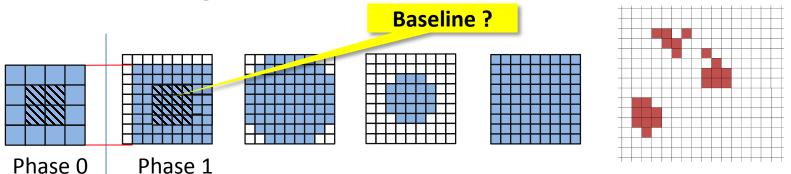

not yet final...

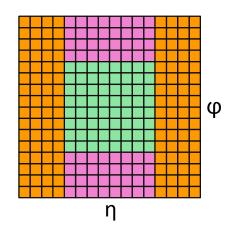
jFEX

Intro: L1Calo Phase-1 System / Jets


Baseline jFEX input data

- Fibre bundles via patch panel / fibre re-bundling stage
- Granularity .1×.1 (η×φ)
- One electromagnetic, one hadronic tower per η×φ bin
- Baseline 6.4 Gb/s line rate, 8b/10b encoding,
 → 128 bit per BC
 Stick to 6.4?
- Up to 16bit energy per tower → 8 towers per fibre
- LAr: pre-summed data from DPS (no BCmux)
- Tile ... options...

Sliding Window Algorithms


- Increase dynamic range
- Improve granularity by factor of four, to 0.1×0.1 ($\eta \times \phi$)
- Slightly increase environment (0.9 × 0.9 baseline)
- Allow for flexibility in jet definition
- Fat jets to be calculated from high granularity small jets?
- Optionally increase jet environment
- Assume fat tau algorithm resides in same FPGAs

Data replication

Sliding window algorithm requiring large scale replication of data

- Forward duplication only (fan-out), no re-transmission
- Baseline: no replication of any source into more than two sinks
- Eta-strip / phi quadrant organisation:
- Fan-out in phi handled at source only (DPS)
 - Transmit "core" and "environment" data
 - Duplication at the parallel end (on-FPGA), using additional Multi-Gigabit Transceivers
 - Allowing for differently composed streams
 - Minimizing latency
- Fan-out in eta handled at destination only
 - Baseline "far end PMA loopback"
 - Looking into details and alternatives (passive electrical splitting)

jFEX module partitioning baseline

Algorithm requiring environment of 0.9×0.9 around each tower to be processed $\Rightarrow +/- 4$ neighbours in eta and phi

Enough?

Rely on that?

Processor modules

- Process strips along eta
- Receive fully duplicated data in phi from DPS
- 8 modules covering half of eta, phi quadrant each
- Most cells duplicated in a regular way at both source and sink
- "Irregular" duplication at η=0
- (Current) detector cabling has lower latency around η=0 due to cable path
- Benefit from this latency reserve and use for additional optical fan-out (re-transmission)

η

η=0

jFEX baseline partitioning

Processor modules

- Half eta × phi quadrant per module ~3.2 × 1.6
- Total of \sim 32 \times 16 bins \times 2 \times 2 (upstream duplication, e/h)
- ~256 incoming fibres @ 6.4Gb/s baseline
- ~22 × 12-way "MicroPOD" high density receivers
- Four 72-way fibre connectors ("MPO/MTP")

288 fibres enough?

 Note: further connectivity required for duplication at η=0: either front (re-transmission) or back (separate active optical fanout station)

Processor FPGAs

- Core of up to 1.2×0.8 ($\eta \times \varphi$), plus environment 0.8×0.8
- 20 × 16 bins → 80 high speed links
- 6 large FPGAs per module (3 × 2)
- Eta coverage nominally $(3 \times 1.2) + 0.4 = 4$

FCAL granularity overlap region

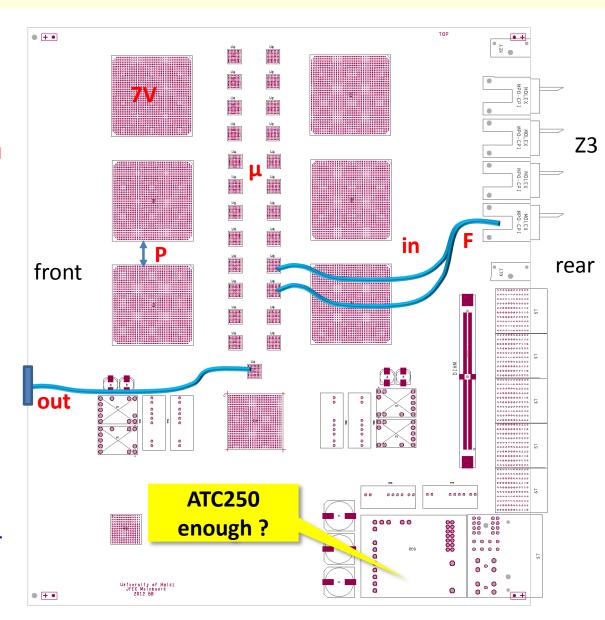
Baseline and options

Phi quadrant baseline driven by need for a rock solid design:

- Line rate limited to 6.4 Gb/s only
- Avoid extremely dense module
- Sufficient $\eta \times \phi$ coverage at module level to allow for increase of environment \gg baseline of 0.9 \times 0.9
- Orientation along eta might better match Tilecal in phase 2 ?

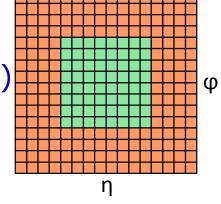
Backup

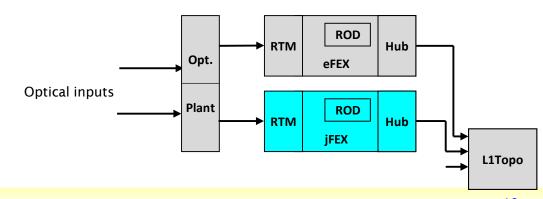
 In case of problems with η=0 - duplication go for full eta, phi octant scheme


Options

- Continue work on higher link speed
- Continue work on duplication schemes
- Consider slightly larger/more FPGAs
- → Increase environment beyond 0.9 × 0.9

Do we need the details for higher rate option now?


How to fit on a module?


- AdvancedTCA format
- 6 processors XC7VX690T
- 4 microPOD sockets each µ
- Opto connectors in Zone 3
- Fibre bundles from rear F
- fan-out via "far end PMA loopback"
- Output to front panel
- Readout via backplane
- Maximise module payload: small-footprint ATCA power brick, tiny IPMC mini-DIMM

jFEX system (baseline)

- Need to handle both fine granularity and large jet environment (minimum 0.9×0.9)
- Require high density / high bandwidth to keep input replication factor at acceptable level (~3/4 of all FPGA inputs are duplicates)
- Fit in 8 modules (difficult to spread out)
- Single ATCA shelf
- Sharing infrastructure with eFEX
 - Handling / splitting of fibre bundles
 - Some communalities in ROD design
 - Hub design
 - RTM

Some remarks on baseline

- FPGA density reduced wrt previously presented phi ring scheme
- Still very dense design, high power dissipation
- FPGA count might grow again for larger jet option
- Real-time circuitry has absolute precedence over non-real-time components
 - Happy to see RODs move off module
 - Any TTC solution must be minimum footprint
 - Power and ATCA control minimized in floor-plan shown
- Baseline design would probably allow for low-latency direct output into L1Topo (48 fibres total)
- Output consolidation possible at some latency penalty
- jFEX relies on "MicroPOD" high-density optical devices
- Aim at higher line rates (currently FPGAs support 13 Gb/s, Mini/MicroPOD 14 Gb/s)
- Would allow for even finer granularity or larger jets or smaller FPGA devices

Issues / questions

Many issues that came up recently are common to both FEXes. Concentrate on jFEX specific issues here.

- What is our default jet algorithm?
- The 6.4 Gb/s baseline is not quite what we want to build
 - At module level there is enough environment for large jets
 - With FPGAs available on the market that cannot be exploited (excessive on-board duplication)
- Is 6.4 Gb/s / 0.9 x 0.9 ok, assuming we will not actually build the baseline but rather increase input rates 2-fold?
- jFEX preferring 12.8G 8b/10b over eFEX preferred 64/66!
- What real-time output bandwidth is required?
 - Board level merging (phase 1)?
 - Phase 2 output to L1Calo?

Power...

- Large FPGAs easily dissipate 30W each.
- Standard ATCA power modules rated 250W (ATC250)
- Might have to find non-standard solution
- High power crates today provide 450W/slot (power, cooling)
- Larger jet environment will inevitably increase power consumption
- microPODs are tiny and have a considerable local dissipation, likely to require custom mechanics/heat sinks

questions

- Can we agree on common components
 - IPbus
 - LAPP DIMM
 - Configuration (SysACE?)
 - Some TTC
 - Small footprint
 - Ideally firmware only
 - Just one clean clock plus an MGT link for data?
- The ROD is understood to be conceptually similar between FEXes.
- Can we agree on something that doesn't require large local buffers on the processors?