Software/firmware activities @ MZ

- Working concurrently on support of existent hardware and pre-phase1 circuitry
 - Software (Jan) and firmware (Uli) for JEM processors
 - Software (Jan, Christian) and firmware (Christian, Patric, Stephan) for L1Topo
- Software for current systems is VME/HDMC based
 - Mainz in charge of JEM module services / register maps ...
 - Some contribution made to test vector generation in the not so recent past
 - Probably just minor modifications required during LS1
- Software for L1Topo makes use of IPBus suite
 - Need to write module services from scratch
 - Register model, test vectors, GUIs, ..., ...
- L1Topo firmware under way
 - Regina: physics / algo firmware coordination
 - Stephan: algorithms
 - Patric: infrastructure MGTs, real-time path before algos, including masking, error checking, play/spy, firmware based test vectors
 - Christian: IPBus
 - (Marek: readout)

Software

Upgrade of JetProcessor pre-phase 1

- Using updated firmware register map from Stockholm

	Reserved	()	(/		
Offset + 200	RoI0:Threshold1/Size1	12	0x3FF	Read/Write	
Offset + 202	RoI0:Threshold2/Size2	12	0x3FF	Read/Write	Bits Function
		12	0x3FF	Read/Write	Bito Function
Offset + 214	Rol3:Threshold1/Size1	12	0x3FF	Read/Write	
Offset + 216	Rol3:Threshold2/Size2	12	0x3FF	Read/Write	Threshold / FCAL Threshold
		12	0x3FF	Read/Write	0 – 9 Threshold value
	Rol7:Threshold1/Size1	12		Read/Write	10 - 11 Cluster size
Offset + 230	RoI7:Threshold2/Size2	12	0x3FF	Read/Write] ••

- Upgrade of EnergySumProcessor pre-phase 1
 - Firmware not yet updated
 - Updates to playback and spy memory
 - changes in the module services, simulation and test vectors
- Integration of IPBus sw/register model for L1Topo
 - In cooperation with Christian and Murrough
 - Trying to setup IPBus software and L1Calo package on a virtual machine in Mainz
 - Write module services from scratch
 - Register model, test vectors, ... to be done

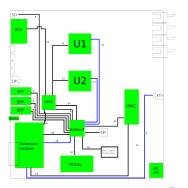
L1Topo Module Control IPBus Protocol

Christian Kahra

Institut für Physik - ETAP Johannes Gutenberg-Universitaet Mainz

27. Juni 2013

Chr. Kahra (ETAP / IPh / JGU Mainz)


L1Topo Module Control

E ► E ∽QC 27.06.13 1/4

(日) (周) (三) (三)

L1Topo Module Control

- Communication between PC and Control-FPGA via Ethernet
- read-, write-, ... requests on module registers transacted by IPBus
- on prototype module the Processor FPGAs are connected with Control FPGA by 21 LVDS-pairs respectively
 - these 21 LVDS-pairs are shared by Control, ROD and TTC

Standard approach: Every FPGA is IPBus-Endpoint

- sharing the Ethernet MAC via AXI4-Stream (David Sankey)
- AXI4 signals:
 - receive side: mac_rx_data[7:0], mac_rx_error, mac_rx_last, mac_rx_valid
 - transmit side: mac_tx_data[7:0], mac_tx_error, mac_tx_last, mac_tx_valid, mac_tx_ready
- every Endpoint sees whole traffic, discarding unwanted packets
- not possible on the prototype module because of limited bandwith

Alternative: Processor FPGAs are IPBus-Slaves

- IPBus-Slave on the Control FPGA represents Processor FPGA
 - IPBus data-, address- and control- lines are serial connected to the Processor FPGA
 - transaction is holded until acknowledge from the Processor FPGA arrives

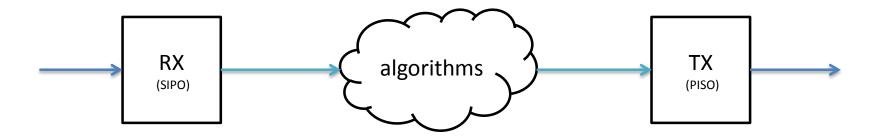
▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

IPBus address space

Description of the IPBus address space

- not coherent on firmware and software side
- a common XML description of the whole L1Topo firmware is in discussion

 ${\ }$ IPBus addresses would have to be part of this description Currently:



Chr. Kahra (ETAP / IPh / JGU Mainz)

L1Topo Module Control

Current MGT status

- Work on Top-Level-VHDL module with instantiated MGTs and connected algorithms
- C++ based instantiation and mapping of MGTs in development
- Currently also busy with BERT on AVAGO-MINIPOD mezzanine board based on Wojciechs format

MET, HT and Meff

• MET= $\sqrt{E_x^2 + E_y^2}$

 \rightarrow implemented with CORDIC

resource use [%]	latency [ns]
0.11	~50

• $HT=\Sigma p_T(jets)$ and $Meff=\Sigma p_T(jets,MET)$ with 64 jet TOBs

resource use [%]	latency [ns]
0.44	23.1

• all implementations on xc7vx690tffg1927-2

$oldsymbol{\phi}_{\mathsf{MET}}$

- $\phi_{\text{MET}} = \arctan\left(\frac{E_{\chi}}{E_{\chi}}\right)$
 - CORDIC implementation (without format change)

resource use [%]	latency [ns]
0.12	17.2

- use sign of Ex and Ey to calculate quadrant,
- use relative size to calculate octant,
- use $E_x > E_y$ threshold (with 7 thresholds) to get 0.1 granularity

resource use [%]	DSP use [%]	latency [ns]
0.06	0.19	12.5

Transverse/Contratransverse Mass

•
$$M_T = \sqrt{2E_T MET(1 - \cos(\Delta \phi))}$$

 $\rightarrow M_T^2 = 2E_T MET(1 - \cos(\Delta \phi))$

resource use [%]	DSP use [%]	latency [ns]
0.03	0.06	13.1

•
$$M_{CT} = \sqrt{2E_T MET(1 + \cos(\Delta \phi))}$$

 $\rightarrow M_{CT}^2 = 2E_T MET(1 + \cos(\Delta \phi))$

resource use [%]	DSP use [%]	latency [ns]
0.02	0.06	12.5

Testimplementation with multiple algorithms

- maximum number of cluster TOBs
 - with sorting 6
 - with selection 6
- maximum number of jet TOBs
 - with sorting 10
 - with selection 10
- whole algorithm module has a latency of 3 BC
- currently reworking selection algorithm