MET, HT and Meff

- MET= $\sqrt{E_{x}^{2} + E_{y}^{2}}$
 - → implemented with CORDIC

resource use [%]	latency [ns]
0.11	~50

• HT= Σp_T (jets) and Meff= Σp_T (jets,MET) with 64 jet TOBs

resource use [%]	latency [ns]
0.44	23.1

all implementations on xc7vx690tffg1927-2

$oldsymbol{\phi}_{\mathsf{MET}}$

•
$$\phi_{\text{MET}}$$
=arctan $\left(\frac{E_{\chi}}{E_{\gamma}}\right)$

CORDIC implementation (without format change)

resource use [%]	latency [ns]
0.12	17.2

- use sign of Ex and Ey to calculate quadrant,
- use relative size to calculate octant,
- use $E_x > E_y$ threshold (with 7 thresholds) to get 0.1 granularity

resource use [%]	DSP use [%]	latency [ns]
0.06	0.19	12.5

Transverse/Contratransverse Mass

•
$$M_T = \sqrt{2E_T MET (1 - \cos(\Delta \phi))}$$

 $\rightarrow M_T^2 = 2E_T MET (1 - \cos(\Delta \phi))$

resource use [%]	DSP use [%]	latency [ns]
0.03	0.06	13.1

•
$$M_{CT} = \sqrt{2E_T MET (1 + \cos(\Delta \phi))}$$

 $\rightarrow M_{CT}^2 = 2E_T MET (1 + \cos(\Delta \phi))$

resource use [%]	DSP use [%]	latency [ns]
0.02	0.06	12.5

Testimplementation with multiple algorithms

- maximum number of cluster TOBs
 - with sorting 6
 - with selection 6
- maximum number of jet TOBs
 - with sorting 10
 - with selection 10
- whole algorithm module has a latency of 3 BC
- currently reworking selection algorithm