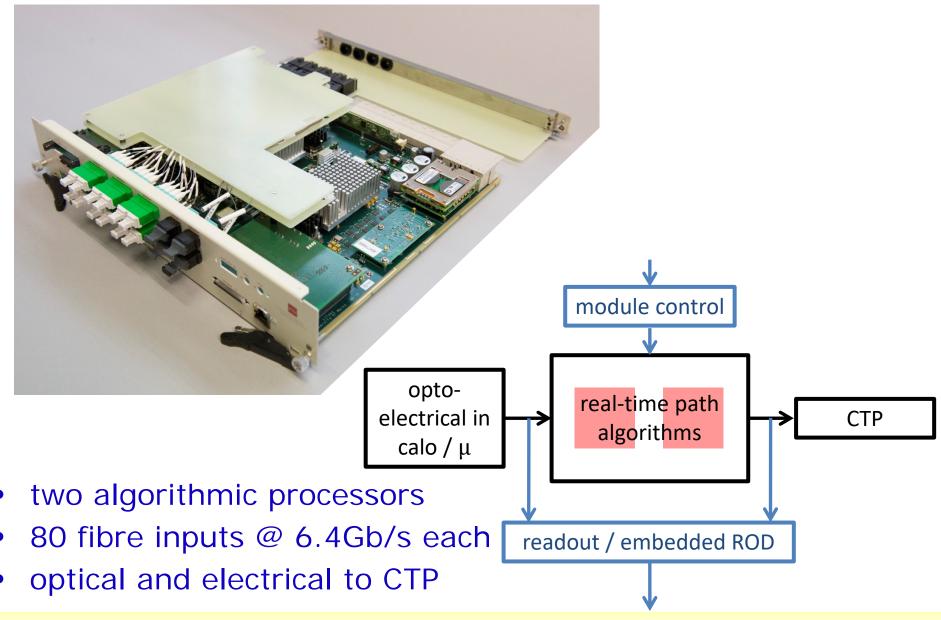
L1Topo Phase-1

Status & Plans

Uli / Mainz

Uli Schäfer


- Intro
- Interfaces / Requirements
- Status
- People
- Plans

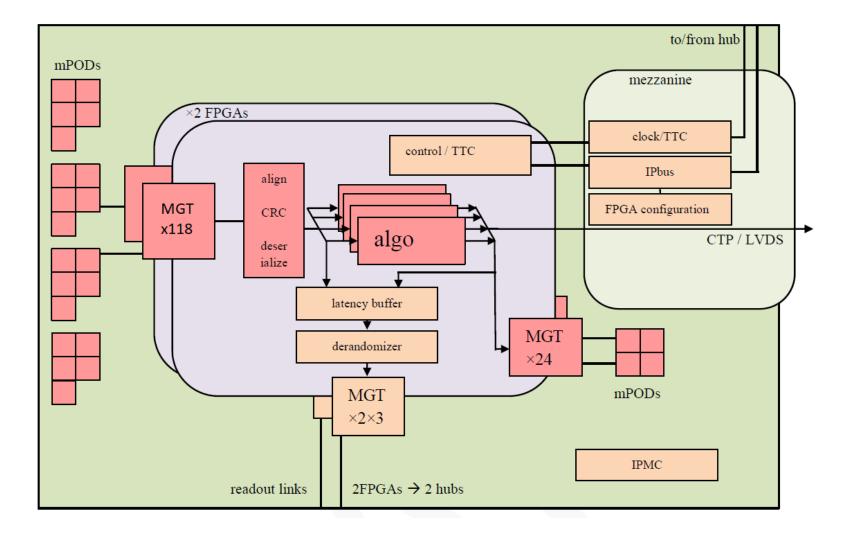
L1Topo @ Run-2

Two modules running topological algorithms, Calo & Muons (multiplicity based Calo triggers provided by CMX)

L1Topo module @ Run-2

L1Topo @ Phase-1

New L1Topo based on jFEX mainboard with


- Two processors with twelve 12-way optos each
- Extension mezzanine with added electrical out to CTP

← **jFEX** prototype:

- ATCA module
- Input fibres via Zone 3
- 24 12-way opto devices
- Four processor FPGAs
- (one currently mounted)
- Control on mezzanine
- Successfully tested @CERN
- Final prototype in production

L1Topo module block diagram

L1Topo @ Phase 1, some details

- ATCA modules compatible to the L1Calo Phase-1 ecosystem
- L1Calo standard ROD & clock distribution
- L1Calo standard Zone 3
- 118 input fibres per processor FPGA, 11.2/12.8 Gbps
- 24 output fibres per processor FPGA
- Electrical and optical output to CTP
- Electrical output via mezzanine / front panel
- Inter-FPGA connectivity 64 Gb/s (latency!)
 That's basically the maximum possible with current technologies
- 3 L1Topo modules for Phase-1, allocated as follows (see below)
 - hit merger for L1Calo multiplicity triggers plus gFEX
 - topology : jet/tau combinations
 - topology : electron combinations

Interfaces to L1Calo and Muons

- Optical multi fibre bundles, via MPO/MTP in Zone-3, received from some re-bundling box (as current L1Topo)
- Receivers are Foxconn/Broadcom AFBR-824, 14 Gb/s
- FPGAs support >16 Gb/s
- System designed for mixed 11.2 and 12.8 Gb/s operation
 - Required by xFEX constraints
 - Muons ?
- For latency reasons 8b/10b encoding supported only
- Steve has worked out requirements regarding data volume into L1Topo from FEX/Muon sources
- Finer details of data contents / Trigger Objects (TOBs) and formats to be defined

For details on requirements see Steve's presentation: https://indico.cern.ch/event/638444/contributions/2639285/attachments/1490897/2318031/topo170711.pdf

Status of h/w development

- New L1Topo is jFEX based
- jFEX shown to work well in current incarnation (1 FPGA)
- jFEX programme ongoing ... Final prototype under way ... review... preproduction... → further input into L1Topo programme
- Real work:
 - transformation jFEX \rightarrow L1Topo under way
 - Have been working on routing layer planning
 - Block diagrams updated to large extent
 - Incorporate very recent updates to jFEX
 - Few things missing, need to finalize clocking
- Paper work: Engineering specs available soon, see below...

Who's who...

- Katharina primary contact from Oct. 2017 (Uli \rightarrow)
- Uli hardware, DCS
- Johannes firmware
- Holger online software
- Marek readout
- Rosa permanently at CERN

L1Topo phase-1 is a reduced jFEX hardware-wise, and an re-use/upgrade of phase-0 Topo software/firmware. Assume synergies with jFEX project and ongoing commitment by phase-0 simulation/validation crew.

Plans (hardware)

- Hardware schedule updated
 - Specification document to be complete end July
 - PDR mid August
 - Schematics to be completed until mid October
 - Layout completed by end January
- Final hardware in hand Oct. 2018
- L1Topo and jFEX development/production cycles closely related and interleaved.

	Extended Algorithmic implet	110 2//0//17	WUT TO UV TO	44.0 WNS		
91	Phase-I L1Topo	Mon 09/01/17	Fri 28/09/18	440 days		_
92	Prototype	Mon 09/01/17	Fri 18/05/18	345 days	-	
93	Engineering specification	Mon 09/01/17	Fri 14/04/17	14 wks		
94	Preliminary Design Review	Fri 14/04/17	Fri 14/04/17	0 days	14/04	1
95	Schematic Entry	Mon 17/04/17	Fri 04/08/17	16 wks		1
96	Layout + PCB Simulation	Mon 07/08/17	Fri 22/12/17	20 wks		
97	Manufacture	Mon 08/01/18	Fri 02/03/18	8 wks		
98	Acceptance and Integrated 1	Mon 05/03/18	Fri 27/04/18	8 wks		
99	Contingency	Mon 30/04/18	Fri 18/05/18	3 wks		i 💻
100	Production	Fri 18/05/18	Fri 28/09/18	95 days		
101	Production Readiness Revie	Fri 18/05/18	Fri 18/05/18	0 days	1	 18/05
102	Manufacture	Mon 21/05/18	Fri 13/07/18	8 wks		
103	Acceptance Tests	Mon 16/07/18	Fri 07/09/18	8 wks		
104	Contingency	Mon 10/09/18	Fri 28/09/18	3 wks		i
105	Firmware	Mon 17/04/17	Fri 27/04/18	52 wks		

Further plans

Integration with external systems

- Phase-0 topo is integrated with external systems
- Some hardware interfaces need to be reworked
- Software/firmware interfaces to be adapted
- Assumption that for external links firmware blocks will be made available from designers of far end interface
- Readout to be adapted to ROD/hub scheme (Marek)

Simulation

 Simulation (low level, high level) exists and is being improved and maintained for current L1Topo. Will need to be continued for Phase-1 Topo. Assume that common framework will be made available for Phase-1.

Activities at Surface Test Facility

- Prototypes (very soon !) and production modules to be run at STF
- Mainz will supply
 - Modules
 - One PC specifically for Mainz controls
 - A set of USB boxes for specific controls/diagnostics (JTAG,I2C,...), probably small number of fibre bundles
 - Shelves, once production modules are there
- Once production modules and their shelves are down the pit, only spare modules and PC/USB infrastructure will remain
- Require 6-8 slots in common ATCA shelf permanently
- Expect to have access to copies of all upstream / downstream modules and expertise/effort (!!!!)
- Mainz participants in all joint STF tests: Julio, Marcel, Rosa, Uli

Schedule Test/Install/Commission

- Schedule similar to jFEX schedule, just slightly behind
- Initial (partial) system tests might be performed with Phase-0 Topo / Prototype.
- No strict need to have final L1Topo system available before complete set of upstream systems.
- People involved in CERN installations / commissioning, and long-term maintenance of Mainz built modules : Rosa, Uli

Backup slides

Latency at Phase-1

Table 13: L1Topo						
	ns	BCs	Sub Total	Total		ЦТоро
Optical Input available from CMX, eFex, jFex & Muctpi				64,9		
ഥTopo Input Deserialisers	50	2,0				
Synchronize to local clock - 320-> 40 MHz	25	1,0				
Algorithmic Processing	125	5.0				
			8,0			JK
Electrical Output to CTP (multiplexed) (if us	25	1,0			fiai	ires
Electrical Cable to CTP (if used) (2m)	10	<u>0,4</u>			nge	
			1,4			
L1Topo electrical input available at CTP				74,3	L1Topo_E	lectrical
Output Multiplexers 40-320 MHz (if used)	25	1,0				
Output Serialisers for optics (if used)	50	2,0				
Fibres to CTP (if used) (2m)	10	<u>0,4</u>				
			3,4			
L1Topo Optical inputs to CTP available			11,4	76,3	L1Topo_Optical	

- Latency is tight
- Inter-FPGA fan-out is part of algo latency ! (~2BC)?
- Incoming signals on latency critical path (Muons / NSW) might bypass inter-FPGA fan-out (upstream duplication)
- Check input MGT/deserialization latency assumptions against current reality (Topo I)

• Electrical fast output path available (limited bandwidth)

Phase-2

- Seems that old plans for forward compatibility to Phase-2 have become obsolete.
- Therefore no Phase-2 slides in this presentation
- However, please note that there is plenty of optical output bandwidth available (up to 600Gb/s per L1Topo module) which is certainly not required into a Phase-1 style CTP.
- So probably well prepared for a new lease of life at Phase-2