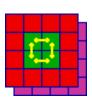
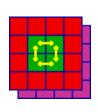

L1Topo requirements for Phase-1

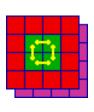
- Long established task-force to outline Topological Trigger module requirements in Run-3
- There has been another long hiatus
- But the end is (possibly) in sight
 - Many thanks to Ian and Robin for kicking me out of my previous lethargy
- Summary
 - All information now gathered (almost)
 - Draft document complete (almost)

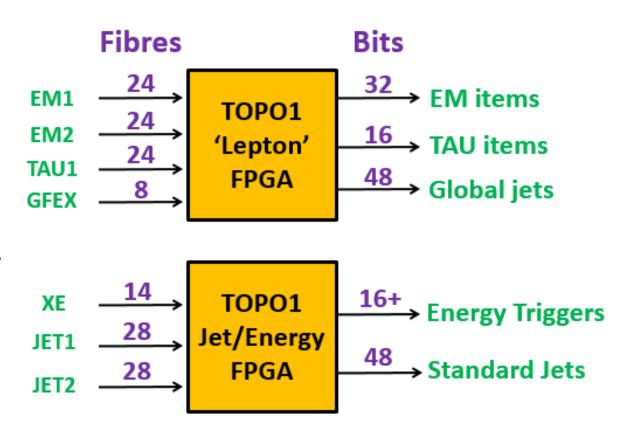

Outline of document

- Topo input numerology
 - All the FEXes
 - Also MUCTPI
- Trigger requirements
 - Topological Triggers
 - Non-topological triggers (thresholds, multiplicities)
- Strawman Topo Connectivity
 - How does it fit into current design?
 - How does it fit into upgraded design?
 - How do we deal with commissioning period?
 - Red as currently missing!

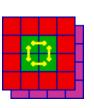

Outline of Talk

- Will only cover the newer material
 - Original details are provided in the backup slides
- Previously covered:
 - FEX output content
 - Analysis of simple multiplicity trigger requirements
- Covered today:
 - Analysis of current topological trigger usage
 - Assignment of topological triggers to Topo modules

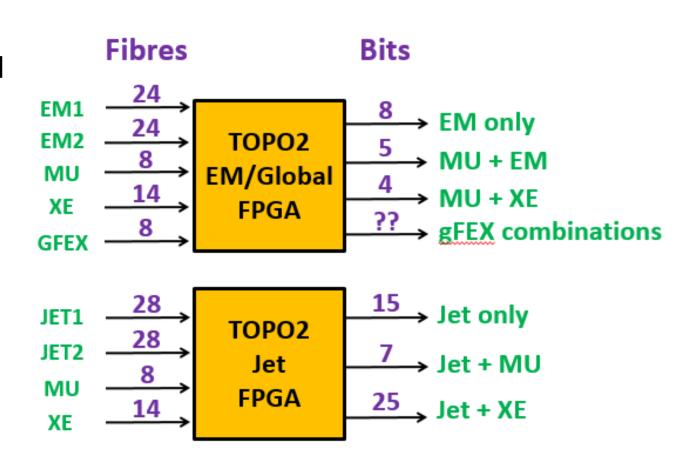

'Typical' Topological Menu


TOB types	Approximate number of Algorithms	Physics Case	Location
MU only	40	B Physics and S.M. J/psi	MUCTPI
EM only	8	J/psi electron	TOPO 2
Jet only	15*	SUSY, Exotics (MJJ)	TOPO 2
MU + XE	4*	Exotics (Late)	TOPO 2
MU + EM	5	Exotics (LFV)	TOPO 2
MU + Jet	7*	B-tag	TOPO 2
Jet + XE	25*	Higgs, SUSY (KF)	TOPO 2
MU + Jet + Tau	3*	Higgs (Disambiguation)	TOPO 3
EM + Jet + Tau	3*	Higgs (Disambiguation)	TOPO 3
XE + Jet + Tau	6*	Higgs (Disambiguation)	TOPO 3
XE + Jet + EM	15*	J/psi electron (tag/probe)	TOPO 3
EM + Tau	8	Exotics (LLP)	TOPO 3
	* plus more using gFex		

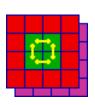
'Simple' TOPO1 Module



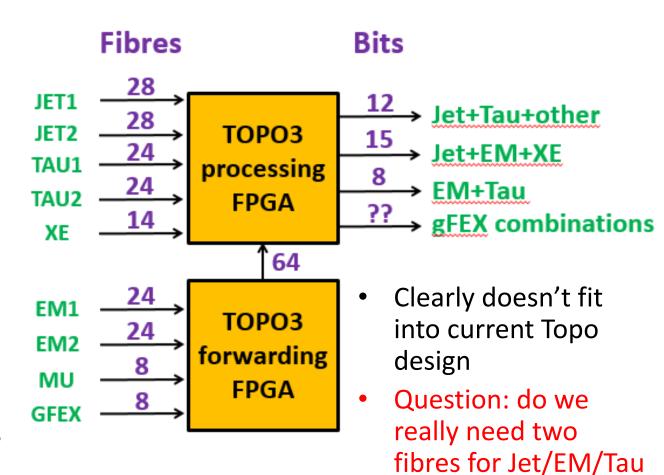
- Pure multiplicities
 - Replaces CMX
- Includes new gFEX outputs
- Simple, fast, parallel algorithms
- (No Muon inputs or outputs)
- Fits into current
 Topo design
 - In terms of i/o



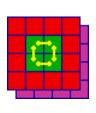
TOPO2 Module: small topological combinations



- Mostly single and double TOB type triggers
- Allows gFEX equivalent of JET triggers
- No Inter-FPGA communication
- Fits into current
 Topo design
 - In terms of i/o

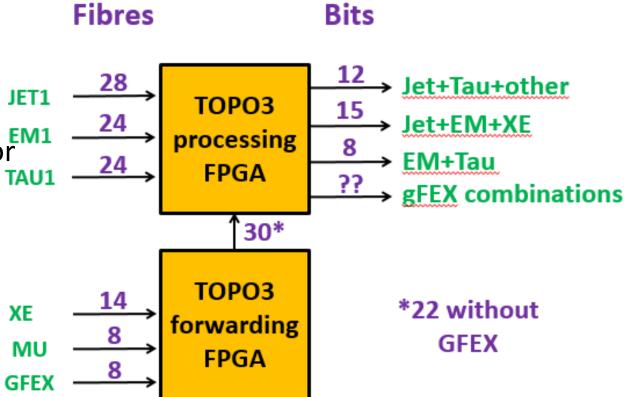


TOPO3 Module: Multi-TOB combinations


- ALL TOB types combined in one place!
- Huge input requirement for one FPGA
- Better separation possible but...
- A Jet+Tau+EM algorithm alone requires 152 links

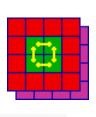
TOBs

TOPO3 in current design

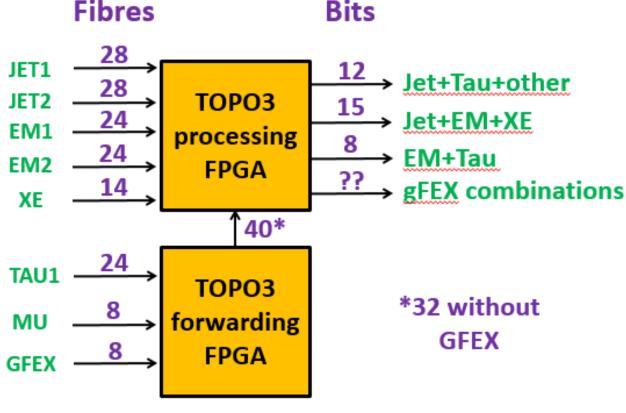


 If we can get away with 6/7 TOBs per EM, TAU, JET...

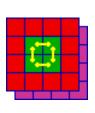
Still a difficult ask for TAU


 Also requires data forwarding, many algorithms will be slow

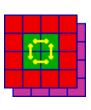
– Latency problems?



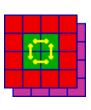
TOPO3 in upgraded design




- TAU fibre is (probably) least sensitive to overflows
- But Tau Higgs trigger is EM1
 one of the big users of EM2
 Topo, so be careful XE
- Need to study algorithms and compromises
 - Most of these triggers using truncated lists anyway?

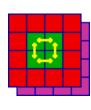

Commissioning at Phase-1

First n days of Run-3

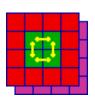


- New MUCTPI will be in place
 - Timing in possible during LS2 (probably)
 - Muon multiplicities + topo algorithms available on day 1 via new route
 - Old style Muon to TOPO connectivity gone
 - Muon + other TOB triggers not possible in legacy Topo
- FEXes and new Topo will be in place (hopefully!)
 - But my feeling is much calibration still required with beam
 - Individual super-cell timing calibration is basic minimum
 - Will need to verify that NO super-cells are triggering early
 - Beyond timing, many other 'calibrations' are necessary
 - Filters, energy, pedestal correction, threshold/isolation tuning
 - Until all these are studied with data, new system is unlikely to outperform legacy trigger

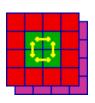
How long will this take?


Conclusions

- Draft document nearing completion
 - Current version attached to agenda
- Next stage, feedback from task-force
 - Via email and a meeting soon...
- General conclusions on Topo requirements
 - Current Topo design could be stretched to accommodate Phase-1 inputs
 - But with inevitable compromises in some algorithms
 - An upgraded design with more inputs resolves many of these issues
 - Maybe with some smaller compromises, should be studied
 - But latency is likely to be critical for some algorithms with either design

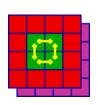

Backup

Talk from previous L1Calo Joint Meeting


L1Topo for Phase-1 Taskforce Latest News

- Updated version of talk given in TDAQ week:
 - https://indico.cern.ch/event/538558/contributions/2287652/attachm ents/1345521/2028470/topo160929.pdf
- Warning, much of that talk wrong
 - All errors/misunderstandings are/were mine
- Taskforce has met three times so far
 - Still have work to do

Reminder: Topo Requirements Task Force - who not to blame

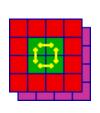


- Physics and Trigger Requirements
 - Brian Petersen, Martin Zur-Nedden
- Topo and Central Interfaces
 - Katharina Bierwagen, Thilo Pauly, Uli Shaeffer
- FEX Interfaces
 - Michael Begel, Weiming Qian, Elena Rocco
- Phase-2 and interested parties
 - David Sankey, Robin Middleton, Murrough Landon

Next steps

(from 2nd meeting with notes)

- I will set up twiki
- Not done
- Also will try to have a first shot at defining i/o for a 'counting' Topo module
 - Maybe some, but not all simple thresholds can be done here
 First attempt will be presented today
 - Starts to define grouping of information on FEX outputs
- Would still like more input on Topo/CTP i/o


I'm still a bit hazy here – next meeting

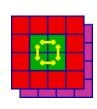
Next meeting when I've made some progress!

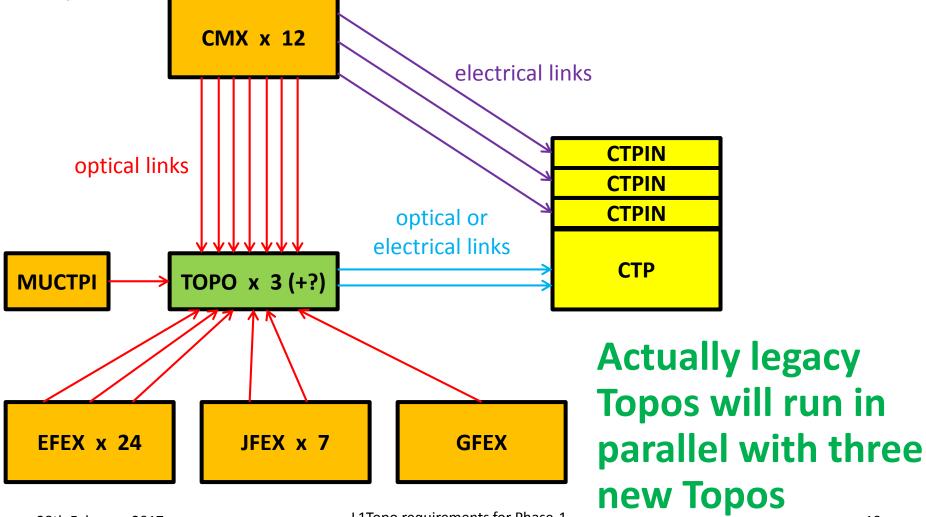
Held, now I have more to do...

(Most of) rest of today's talk

- Concentrate on Run-3 commissioning phase
 - In many ways the most demanding period before Phase 2
- Are the current module specifications and numerology sufficient?
 - particularly 3 Topo Processors
- What's the best way to organise the Topo Modules and inputs
 - For convenience
 - For commissioning purposes
 - Do they fully address trigger needs?
- Light on details of output, but hopefully good first guess at inputs to Topo

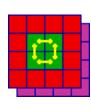
Commissioning at Phase-1

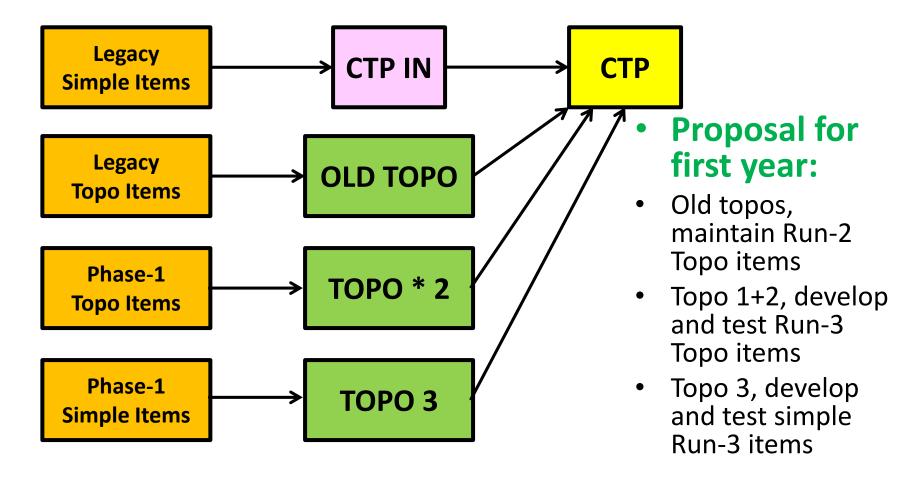

- Is it feasible to start Run-3 with minimal legacy trigger items?
 - If so, for how long?


Or, more ambitiously, run all relevant Run-2 Triggers, while also adding new ones

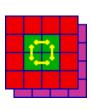
- How do we commission new Topo algorithms?
 - Note that includes the trivial ones!
 - This has proved a difficult issue in Run-2
 - And we'll be commissioning eFEXs, jFEXs, gFEX in parallel
- How do we use (possibly) limited CTP inputs to do all of these things simultaneously?
 - Do we need a more flexible Level-1 menu?

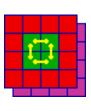
Phase-1 Commisioning



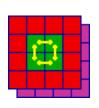


L1Topo requirements for Phase-1


The big picture

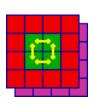

Assumptions

- Phase-1 Legacy menu is broadly similar to current menu
 - Not too unreasonable, if LHC luminosity is really restricted to $1.7x10^{34}$ for the next few years
 - Details will of course change, and there will be fine tuning
 - But in some ways things get simpler if luminosity has no big ramp-ups within one year
- Legacy Topo may need streamlining
 - Perhaps more controversial
 - Probably needed to reduce number of Level-1 items, Topo outputs
 - My feeling is that once Topo usage becomes more standard, will focus in on 'golden' algorithms
 - Rather than having a range, to test out different options
 - You can see this sort of development in the stabilisation on 'preferred' non-Topo thresholds


Consequences

- We don't have to think too much about TOPO1 in the first year
 - Just consolidate key Topo algorithms into one (?) 'traditional' Topo processor
- TOPO 1+2 can be used to mirror old Topo items, but with FEX inputs
 - The devil is in the details here...
 - ...but not for this talk
- TOPO3 should implement the Phase-1 equivalent of the legacy simple thresholds
 - With similar range and multiplicities to the current menu
 - Plus some extra ones due to new capabilities (eg gFEX)
 - Will concentrate on this for rest of talk
 - To do this we have to first understand the current menu

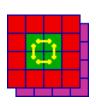
EM threshold usage



Threshold	Bits	Multiplicities	Bits
	Available	Used	Needed
EM3 EM7 EM8VH EM8I EM10VH EM12 EM13VH EM15 EM15VH EM15I EM15IH EM18VH EM20VH EM20VHI EM22VHI EM24VHI	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,2 1,2,3 1,2,3 1 1,2 1,2 1,2 1,2 1,1 1 1	2 2 1 2 1 2 2 2 1 1 1 1 1

- Electron/gamma CMX provides 48 bits
 - -16×3
- Multiplicities 4-7 are never used
- Only 24 bits of the output are really used
- Some thresholds are just alternatives for different luminosities
 - Would not really be needed if the menu could be changed more flexibly during year

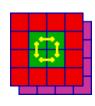
Tau threshold usage



Threshold	Bits	Multiplicities	Bits
	Available	Used	Needed
TAU8 TAU12 TAU12IM TAU15 TAU20 TAU20IM TAU30 TAU40 TAU50 TAU10IM TAU12IL TAU12IL TAU20IL TAU20IL TAU25 TAU25	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1,2 1,2 1 1,2 1 1 1	1 2 2 1 1 1 0 0 0 0 0

- Tau CMX provides 48 bits just like EM
- Multiplicities 3-7 are never used
- Only ~15 bits of the output are really used
- The 'IL', 'IT' are useful labour saving devices for comparing isolation options
 - But can easily be done via emulation offline
- TAU8 is just for Background
- Other low thresholds soon to be superseded by Topo algorithms

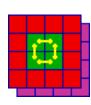
Jet threshold usage



	Bits ailable	Multiplicities Used	Bits Needed
J12 J15 J15.0ETA25 J20 J25 J25.0ETA23 J30 J40 J20.0ETA49 J30.0ETA49 JJ15.23ETA49 J40.0ETA25 J20.28ETA31 J50 J75 J85 J100 J120 J400 J15.31ETA49 J20.31ETA49 J30.31ETA49	3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2	1,2,3 1,2,3,4,5,6 3,4,5 1,2,3,4 1,3 1,3 1,2,3,4 1 1,2,3 1 1,1,2,3 1 1,2,1 1 1,2 1 1,2	2 3 3 2 2 1 2 1 1 1 1 1 1 1 1 1 1
J75.31ETA49 J100.31ETA49	2	$\frac{1}{1}$	$\frac{1}{1}$

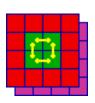
- Jet CMX provides 60 bits:
 - 15 x 2 plus 10 x 3
- More extensive usage of most thresholds, multiplicities
- Still only ~40 bits of the output are really used
- 2-3 thresholds either not used, or for very specialised usage
 - Probably more naturally performed in a Topo algorithm

Muon threshold usage



Threshold	Bits Available	Multiplicities Used	Bits Needed
MU4	3	1,2,3	2
MU6	3	1,2,3	2
MU10	3	1,2	2
MU11	3	1	1
MU15	3	1	1
MU20	3	1,2	2 •

- MUCTPI provides 18 bits:
 - -6x3
- Also no usage of high multiplicity bit
- Only 10 bits of the output are currently used


Energy Thresholds and Heavy Ions

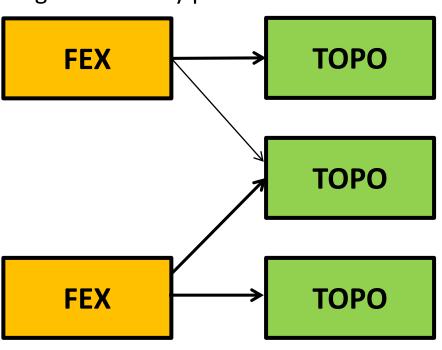
- Total Energy:
 - 16 thresholds available
 - Rarely used in proton-proton
 - Probably too few for Heavy Ions
- Missing Energy:
 - 16 thresholds available
 - Only 8 are used in current menu
 - And half of them are back-up/fall-back thresholds
 - No real need for back-up if menu were more flexible
- Missing Energy Significance:
 - 8 thresholds available
 - Only 2 used in anger
 - Surely the natural territory of Topo and (eventually) gFEX
- Note that the needs of Heavy Ions and proton running are quite different
 - But we only ever have to support one at a time (hopefully)
 - Prefer not to clutter up menu/Topo usage with both sets at the same time

Summary of Lessons from current non-Topo items

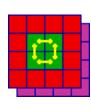
- The menu doesn't come near to occupying all the bits we currently provide
 - Though it may very well be occupying all the CTP inputs!
- Allowing some breathing space for the Run-3 TOPO 3 outputs, could look something like:

	Threshold bits in current menu	Requirement for Run3
EM Tau MU XE/TE Jets gFEX	24 13 10 8/8* 40 0	32 16 16 16 48 48**
_		

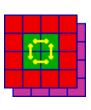
^{*} Approx, need to boost for Heavy Ions?
** Includes gFEX jets, and global items, might be too small


What about the inputs?

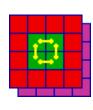
Overall strategy



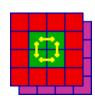
- Each type of FEX provides several copies of the same set of data (TOBs etc)
- These copies can be sent to a individual Topo/FPGAs
 - But not necessarily ALL outputs to EVERY Topo/FPGA
 - Only those that need it for the algorithms they perform
- Ideally can group algorithms into logical sets requiring subset of TOBs
 - To avoid extra latency in FPGA-FPGA link
- Easy for simple thresholding algorithms in TOPO3
 - May be impossible to avoid in some more complex cases

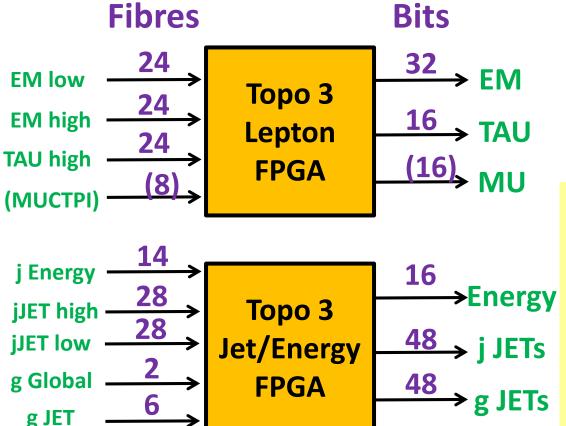

eFEX outputs

- 24 modules, 2 x 16 fibre outputs
 - Various options for partitioning of outputs possible
 - My current preferred option:
 - 1 x high priority/threshold EM TOBs
 - 1 x low+high priority/threshold EM TOBs
 - 1 x high priority/threshold TAU TOBs
 - 1 x low+high priority/threshold TAU TOBs
- Each link contains up to 7 objects
 - eFEX coverage about 2x current CPM
 - CPM saturates at 5 TOBs (only occasionally an issue for EM3)
 - eFEX saturation at 7+7 TOBs should be easily sufficient
 - For Phase-1 anyway, may need re-think for Phase-2
- With 4 different link outputs, 8 copies are possible
 - More than enough to feed 2 FPGAs in 4 Topos


jFEX outputs

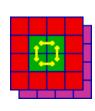
- 7 modules, 4 x 12 Fibre outputs
 - 2 x 12 from Jet/Energy FPGAs (Missing Energy etc)
 - 2 x 12 from pure Jet FPGAs, separate regions
 - Suggest 1 link for Energy TOBs, 2 per jet TOBs
 - 1st Jet link, all TOBs up to a limit
 - 2nd Jet link, overflows, if any
- Each Jet link contains up to 6 TOBs (??)
 - jFEX FPGA region is <2 x current JEM coverage
 - JEM saturates at 4 TOBs (currently rare except in HI)
 - Saturation at 6+6 should be sufficient in most regions
 - Probably also for Forward region
- With 3 different link outputs per FPGA, only 4 full copies
 - Enough to feed 2 FPGAs in 2 Topos
 - Could sacrifice some overflow links for extra energy/priority jet links


gFEX outputs



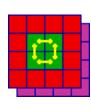
- 1 module, 4 x 12 Fibre outputs
 - Similar to jFEX, 1 x 12 for global quantities and 3 x12 for jets, of various types
 - Not so easy to describe, as many different jet and global algorithms in parallel
 - However, Michael seemed happy with 8 Fibres to each Topo FPGA
 - 2 from global, 2x3 from local
- Less easy to predict link occupancy
 - No current system to make an educated guess
 - Many different objects
 - But hopefully 8 links is generous enough
- With 2 different link outputs per FPGA, 6 copies are possible
 - Easily sufficient for 3 Topos

TOPO 3 Connectivity (aka Simple Topo)

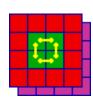


	Threshold bits in current menu	Requirement for Run3
M	24	32
au	13	16
1U	10	16
Œ/TE	8/8*	16
lets	40	48
IFEX	0	48**

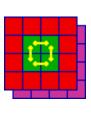
- * Approx, need to boost for Heavy Ions? ** Includes gFEX jets, and global items,
- Need to work out CTP connectivity
 - electrical and/or
 - optical
- Low latency not such an issue here (probably)
- Note, no TAU low threshold/priority inputs
 - Only needed by Topo algorithms


Comments on Simple Topo

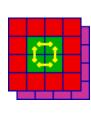
- Looks feasible in terms of inputs
 - But already clear input fibre count is tight per FPGA
 - Already at ~80 inputs just for jet inputs
 - This looks tighter to me now I've understood the jFEX outputs more fully
- Note that already reduced maximum required FEX output copies from 6 to 5
 - Further reduction possible:
 - eg don't need high priority EM/TAU elsewhere (?)


Topo Topos Connectivity

- Next stage of the process
 - Need to understand what inputs needed by each Topo algorithm
 - Partition similar algorithms into FPGAs
 - Use input link numerology suggested by TOPO 3, see if it is suitable for Topo Topos
- Some algorithms require many inputs
 - But there mayb be restrictions too in terms of unnecessary combination
 - Are high priority/threshold EM objects need at all?
 - But jets on their own already take up a large number of links
 - Do any algorithms overflow the 80 link input per FPGA?
 - I'm hoping not many
 - In these cases FPGA-FPGA link is required, plus extra latency
 - Or some other alternative...


A new Topo revision

- Already decided to increase Topo output bandwidth
 - For Phase-2 compatibility
- Could also augment Topo capacity
 - Move to Ultrascale FPGA
 - 120 fibre inputs
 - More processing resources
 - Current Topo is already very stretched
- Obviously a 'bigger' Topo is going to be easier to handle
 - Less concern about input intricacies
 - Probably removes need for FPGA-FPGA added latency
- But is it necessary?
 - Difficult to be sure, we need to study further


A brief slide on Phase-2

- The Task Force is meant to have at least one eye on Phase-2
 - Future re-usability, of Topo, if possible
- My Opinion
 - Topo (Level-0/1 or whatever) is NOT so important to architectural decisions
 - Compared to the rest of ATLAS, it's not a cost driver
 - Complex and costly, yes, but small in number
 - Compared to replacing millions of channels of readout, etc
 - If you need a new module with a few more links and a bigger FPGA, it's probably not such a big issue in terms of hardware design
 - Once the initial design is well validated
 - The real difficulty in Topo is not the hardware, it's the firmware
 - This is probably true independently of the exact number of i/o links etc
 - Replacement strategy for ATLAS lifetime
 - OPAL had working lifetime of 10 years, also one complete CTP replacement after ~5 years
 - We have no experience (yet) of the working lifetime of these complex modules
 - Replacing FEXes/Topo/CTP and similar every few years may be a worthwhile exercise anyway

A brief slide on Phase-2

- The Task Force is meant to have at least one eye on Phase-2
 - Futur

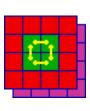
Recent News, Phase-2 Decision:

- My Opin
 - Торо
 - Complex
 - •
 - If you not s
 - The
 - Repla

Phase-2 Topo architecture likely to be new/different

No need to think too hard about forward compatibility

cisions


t's probably

fter ~5 years

- We have no experience (yet) of the working lifetime of these complex modules
- Replacing FEXes/Topo/CTP and similar every few years may be a worthwhile exercise anyway

Conclusions

- Proposal for Simple Topo connectivity made
 - Had one iteration with the task force, leading to some updates
 - Need to understand connectivity to CTP
 - If reasonable can move onto Topo algorithm connectivity
 - Starting to look at current and potential future Topo algorithms
- Run 3 setup seems feasible with current module specifications
 - But recent understanding of jFEX outputs makes it look tighter than I'd originally thought
 - One potential big pitfall: latency
 - it might all be a lot easier with new modules containing more links
 - Would probably lead to simpler cabling, and less need to distinguish dedicated Topo modules
 - SIMPLE IS GOOD
 - Maybe some need for fibre spaghetti remains