L1Topo recent work / status / plans

Uli, Julio / Mainz

Hardware Firmware (infrastructure/control) Tests

Hardware Overview

- ATCA board (based on jFEX design)
 - Modular design
- 2 Virtex UltrascalePlus FPGAs
- Two iterations
- Prototype (FDR 01/2019)
- Final design presented at PRR 08/2019
 - Fix on MGT calibration

Hardware Overview

- ATCA board (based on jFEX design)
 - Modular design
- 2 Virtex UltrascalePlus FPGAs
 - XCVU9P-2FLGA2577E
 - 120 MGTs (GTY) per FPGA
 - 118 input fibres per processor FPGA
- 24 MiniPOD: 20 RX + 4 TX
- Mezzanines
 - Control & Power
 - Both compatible with jFEX
 - CTP interface module (LVDS drivers)

Hardware Overview

- ATCA board (based on jFEX design)
 - Modular design
- 2 Virtex UltrascalePlus FPGAs
 - XCVU9P-2FLGA2577E
 - 120 MGTs (GTY) per FPGA
 - 118 input fibres per processor FPGA
- 24 MiniPOD: 20 RX + 4 TX
- Mezzanines
 - Control & Power
 - Both compatible with jFEX
 - CTP interface module

L1Topo 1st production module with control mezzanine v3.0

Control Mezzanine v3.0 General Functionalities

- Carrier board for the UltraZed-EV
- Functionalities
 - Hosts the control module of the jFEX/L1Topo mainboard
 - Zynq Ultrascale+ ZU7EV-FBV900
 - LHC clock cleaning and distribution to processor FPGAs
 - Si5345
 - Hosts the MasterSPI configuration circuitry for processors
 - MT25QU02GCBB8E12-0SIT
 - IPBus master
 - Hosts the PHY chip (transformer-less scheme)
 - VSC8221
 - TTC data reception and distribution to processor FPGAs
 - HUB1: Using fanout NB7VQ1006M
 - HUB2: Reception on one MGT and distribution to processors via IOs
 - Communication to mainboard CPLDs (PWR and CTRL_CLK)
 - Monitoring and slow control
 - MiniPODs (Avago) monitoring viaI2C
 - PMBus monitoring

Control Mezzanine v3.0 validation status

- Carrier board for the UltraZed-EV
- Functionalities
 - Hosts the control module of the **jFEX/L1Topo** mainboard
 - Zynq Ultrascale+ ZU7EV-FBV900
 - LHC clock cleaning and distribution to processor FPGAs
 - Si5345
 - Hosts the MasterSPI configuration circuitry for processors
 - MT25QU02GCBB8E12-0SIT
 - IPBus master
 - Hosts the PHY chip (transformer-less scheme)
 - VSC8221
 - TTC data reception and distribution to processor FPGAs
 - HUB1: Using fanout NB7VQ1006M
 - HUB2: Reception on one MGT and distribution to processors via IOs
 - Communication to mainboard CPLDs (PWR and CTRL_CLK)
 - Monitoring and slow control
 - MiniPODs (Avago) monitoring viaI2C
 - PMBus monitoring

U W W M a server			
2		.eo 999	
0	AVNET	CONTRACT OF VALUES	
F			
	80 3.417 [shi]s]u**	17	Raja' Raja' Baja' 🔍

All functionalities have been fully validated on both jFEX and L1Topo! Ongoing production of final PCBs – total lead time, including assembly: 8 weeks

L1Topo Module tests / mainboard

- The production module was stand-alone tested in the home lab
- Power consumption and ripple fully measured and reported
- Full Ibert tests of all interfaces at the STF
- Ipbus subsystem successfully tested (w. control mezzanine 3.0) at STF
- System-level tests at the STF successfully run
 - Formatted TOB data successfully received from the FEXes
 - Spy data BCReset sync'ed
 - L1Accept recorded along with real-time data
 - Stable data transmission
 - Trailer handling understood, final agreement required (see below)
- MUCTPI \rightarrow L1Topo formatted data transmission tests yet to be done **Percently** (double check on prototype \rightarrow production fixes)
- **Recently** (double check on prototype \rightarrow production fixes)
- Further link qualification tests: e/o MGT transmitter tests
- Keysight DSA91204 12 GHz bandwidth
 - Differential probe soldered on the miniPOD connector
 - Optical transceiver for direct fibre connection
- 12.8Gb/s PRBS-7 pattern chosen (\rightarrow reference for jFEX design update)

Last open issue wrt real-time data transmission: Confirm TX link performance

Results – Channel X1Y21

- A channel that had hadn't been well understood in previous tests
- Tune the MGT parameters
- Make sure we are within MiniPOD specs (reduced swing)

Electrical; TX Setup 3; PRBS7

Optical; TX Setup 3; PRBS7

IBERT; TX Setup 3; PRBS7

specification

Conclusions on link data integrity

- Very good eye opening for the L1Topo outputs, after properly setting the TX Pre-Emphasis parameters
 - Within the miniPOD specification
- Validation of the L1Topo Pre-Production module and the GTY calibration circuit
 - No significant difference wrt to Prototype
- \rightarrow consider design fully validated

Firmware status

- Algorithms and input mapping has been reported on (Johannes) https://indico.cern.ch/event/884278/contributions/3745259/attachments/2004273/3346895/talk.pdf
- Real-time infrastructure (MGTs/SerDes) exists
 - Tested with FEXes at STF (protocol tests)
- Module control (Ipbus)
 - First version exists
 - Successfully operated with standalone software throughout STF tests
 - Recent improvement on play/spy module (BCR syc)
 - Being turned into a common framework L1Topo/jFEX
 - Online software for common scheme under way
- Along with control mezzanine v3.0 comes a set of f/w
 - I2C based monitoring of environmental data
- Readout firmware will be ported from jFEX soonish

 \rightarrow Full integration yet to be accomplished: real-time infrastructure / algorithms / control / readout

A few discussions on input TOB data formats...

- Had some initial issues with data formats from FEXes at early STF tests
- Mainly sorted out
- Some modifications to format specs still possible, not finally signed off
 - Discussion on optimal CRC scheme (Jira)
 - Request to add BCR bit to trailer of FEX TOBs
 - jFEX requested some of the "reserved" bits in trailer for overflow indication

 \rightarrow Can be sorted out quickly \rightarrow finalize input firmware soonish

L1Topo production status

- The production PCBs exist
- First module has been assembled, successfully been tested and reported on in this presentation
- Components available for remaining modules
- Expect assembly to take ~ 1 Month after green light from reviewers
- Production of a small batch of control mezzanines v.3.1 under way
 - No issues with PCB production expected
 - Assembly needs to be sorted out (previous batch assembled at CERN !)
- CTP interface module exists, ready for tests with CTP and volume production at any time

Summary / plans

- First L1Topo production board successfully tested
- Basically ready for production of remaining modules
- Firmware components in good shape
 - Algorithms see Johannes
 - Realtime infrastructure done and tested, minor fixes
 - Control firmware being restructured
 - Readout under way for jFEX (see Ren-Jie) → port to Topo
- Firmware integration time-consuming (multi-die FPGAs)
- Ready to install in USA15 in summer