L1Topo status: hardware / tests / production / ...

Uli / Mainz

Hardware Overview

- ATCA board (based on jFEX design)
 - Modular design
- 2 Virtex UltrascalePlus FPGAs
- Two iterations
- Prototype (FDR 01/2019)
- Final design presented at PRR 08/2019
 - Fix on MGT calibration

Hardware Overview

- ATCA board (based on jFEX design)
 - Modular design
- 2 Virtex UltrascalePlus FPGAs
 - XCVU9P-2FLGA2577E
 - 120 MGTs (GTY) per FPGA
 - 118 input fibres per processor FPGA
- 24 MiniPOD: 20 RX + 4 TX
- Mezzanines
 - Control & Power
 - Compatible with jFEX
 - CTP interface module (LVDS drivers)

Hardware Overview

- ATCA board (based on jFEX design)
 - Modular design
- 2 Virtex UltrascalePlus FPGAs
 - XCVU9P-2FLGA2577E
 - 120 MGTs (GTY) per FPGA
 - 118 input fibres per processor FPGA
- 24 MiniPOD: 20 RX + 4 TX
- Mezzanines
 - Control & Power
 - Compatible with jFEX
 - CTP interface module (LVDS drivers)

L1Topo 1st production module with control mezzanine v3.1

Control mezzanine v3.1

- Carrier board for UltraZed-EV SoM
 - Functionality equivalent to v3.0 shown in March TDAQ week, with minor fixes
 - 3 modules produced
 - Currently in use at STF on both **jFEX** and **L1Topo**
 - During last slice week
- Functionalities
 - Hosts the **control** module of the jFEX/L1Topo mainboard
 - Zynq Ultrascale+ ZU7EV-FBV900
 - LHC **clock** cleaning and distribution to processor FPGAs
 - Si5345
 - Hosts the MasterSPI configuration circuitry for processors
 - MT25QU02GCBB8E12-0SIT
 - IPBus master
 - Port selection between backplane or front-panel RJ45 with ETH MUX
 - Hosts the PHY chip (transformerless scheme)
 - VSC8221
 - TTC data reception and distribution to processor FPGAs
 - HUB1: Using fanout NB7VQ1006M
 - HUB2: Reception on one MGT and distribution to processors via parallel I/Os
 - Monitoring and slow control
 - MiniPODs (Avago) monitoring via **I2C**
 - PMBus monitoring

Controller test status

- Smoke tests, power sequencing
- Ripple measurement (MGT)
- Power up with UltraZed connected
 - Re-check **ripple** for MGT power rails
- JTAG access to Zynq
- Booting and configuring from SD card
- Ethernet MUX
 - Zynq PL (**IPBus**)
 - Backplane / front RJ45
 - Zynq PS
- I2C access to Si5345 (jitter cleaner)
 - Monitor status of inputs and outputs
- Reception of TTC clock via backplane with Si5345
- Check clock reception at FPGA from Si5345
- SPI configuration of processor FPGAs
- TTC combined data reception from Hub slot 1

To be done

- Monitoring and slow control of Si5345 and mainboards MiniPODs, DC/DC converters
- Reception of TTC combined data from Hub slot 2 and distribution to processors via I/Os
- Slot dependent IP/MAC
- IPBus stress test

\rightarrow **Production**

Uli Schäfer

All **3** modules tested:

Mainboard test status

One prototype, one production module so far, minor differences

- Both generations of modules thoroughly tested in home lab and at the STF (standalone and slice)
- Modules successfully tested with formatted input from all FEXes
 @ STF
- Data reception confirmed by (BC sync'ed) spy mem readout
- Specific optical attenuation tests done, the last missing one (reviewers' request) quite recently
- All real-time hardware interfaces successfully tested in-depth, including CTP port
- Clocking, TTC data, and readout paths successfully tested
- Successful operation of IPbus, I2C subsystem, IPMC

- Some interfaces tested standalone / IBERT / electrical/optical only
- System tests done with **non-final firmware**

Further steps

Need to make progress on firmware completion

- Due to menu dependency, algorithms will never be "final", just frozen.
- Finalize infrastructure firmware (common code base with jFEX)
- Adapt readout firmware (common code)
- Integrate infrastructure, readout, frozen algorithms (timing closure)

Then

- Repeat slice tests
- Confirm **latency** at system and link level

Some specific tests as requested in the PRR report May 4, 2020

- Interface test L1Topo / CTP
- **Protocol** test between MUCTPI / L1Topo
- Power consumption and FPGA temperatures under full firmware load
- Inter-FPGA parallel LVDS connectivity verification.

And yet further...

Once tests are finished...

"Volume production", for a total of 5 modules

- PCBs available
- Components available
- Should take ~6 weeks
- Completing the modules in the home lab and testing should happen at less than a week per module

Installation

- Installation is what happens before the modules slide in...
- Rack situation still unclear (?)
- Don't expect any commuters to go out to CERN any time soon

→ Limited effort available at CERN, needs careful planning

Summary

- L1Topo and its mezzanines well and tested
- Ready to go into production as soon as:
 - A few PRR recommended tests done
 - Firmware considerably improved and completed
 - Final tests at STF done ... including final (*) latency figures
- Perhaps some open questions about installation at P1

(*) final = determined for a snapshot of algorithms integrated with high-speed infrastructure, control, and readout