Mass Assembly

10.9.13 – Calice Collaboration Meeting LAPP Annecy

JGU Mainz - Phi Chau

Bruno Bauss, Volker Büscher, Julien Caudron, Reinhold Degele, Karl Heinz Geib, Sascha Krause, Yong Liu, Lucia Masetti, Uli Schäfer, Rouven Spreckels, Stefan Tapprogge, Rainer Wanke

Wing LDA/CCC Status

- AHCAL wing data aggregator has been built
- Initial power-up tests successful
- System integration started (André, Rouven,...), but further effort required
 - Firmware for Kintex FPGAs
 - Firmware / Software for Zynq processor ("MARS ZX3")
- VME-sized clock/control unit acting as MARS test bench
 - Issues in firmware load stage observed on engineering sample
 - Further effort required to debug on production silicon available now
- For the time being cover all immediate needs (AHCAL LDA/CCC) with adapter modules on "Zedboard"
 - Clock/control adapters available
 - Data aggregator adapter ready for production
 - New batch of clock fan-out units in production
 - Julien working on software integration

Need for an automatic production

- AHCAL (final design)
 - About 8.000.000 tiles have to be placed on HBU boards
 - With an effort of 10 s per tile \rightarrow ~ 8 years are necessary for the assembling
 - \rightarrow We need an automatic placement
 - \rightarrow With 1 second per placement we need 1 year

Mass production

- DESY: Production of HBU boards
- ITEP: Production of the tiles
- Heidelberg University: Characterisation of tiles/SiPM
- Wuppertal: LEDs
- Mainz University: Placement of the tiles on the HBU board, functionality tests of the assembled boards

Pick-and-place machine

- Pick-and-place machine
 - Camera detects tiles/SiPMs and suction cup places them on the HBU (SiPM pins through the pin holes)
 - Vision system detects tiles and the SiPM pins \rightarrow quality assurance
 - Problem: Reflective surface of the tiles
 - Pick-and-place maschines with Vision systems
 works with light to detect the pins

Camera tests

• We have produced dummy tiles for cameratests at machine manufactors

3 companies have confirmed, that vision system can handle the tiles

Current design

- Mounting of tile on HBU board:
 - Tiles have to been pushed into the alignment pin holes
 - Very small tolerances are needed to fit
 - With 4 pins (2 SiPM pins, 2 allignment pins), tolerances have to be quite big

Modified design: Option 1 – Not wrapped tile

- Mounting of modified tile on HBU board:
 - Plane tiles without alignment pins
 - Requires: Fixation of the tile with gluepoint between tile and reflector foil
 - Just 2 pins (from
 SiPM) → tolerances
 are less demanding

Modified design: Option 2 – wrapped tile (Uni Hamburg)

- Mounting of modified wrapped tile on HBU board:
 - Tile is wrapped with reflector foil and flex pin connector
 - Fixation of the tile with gluepoint
 between HBU and reflector foil

- Screen printer
 - Sets gluepoints on the surface of the HBU
 - High adhesive glue is needed, because we don't want any time for drying-out the glue
 - \rightarrow Silicone
 - Potential issue: Does Gluepoint reduce light yield? \rightarrow Tests

Measurement Set-up

 Measurement of the influence on the optical properties with cosmics

Measurement Set-up

 Measurement of the influence on the optical properties with cosmics

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

First measurement

- The first measurements are finished
 - 2 ITEP tiles with 2 Hamamatsu MPPC S10943-8584(X) are measured with cosmics
 - 1. Unmodified without gluepoints
 - Without allignment pins with gluepoints (allignment pins are removed, << 1 ml silicone is placed on tile)

First results

Configuration	Integrated charge in arbitrary units	Normed on measurement without glue	Numbers of measurements
Tile 1/SiPM 1	2,722±0,023	100%	1068
Plane Tile 1/ Silicone / SiPM 1	2,846±0,022	105%	1241
Tile 2/SiPM 2	4,141±0,031	100%	1238
Plane Tile 2/ Silicone/ SiPM 2	4,393±0,030	106%	1420
			UNIVERSITÄT MAIN

Result

- Light yield of the modified design is better than light yield of current design
- Later tests can determinate the configuration with the best optical properties. We want to test different settings with
 - Different glue
 - Glue shapes
 - Quantity of glue
 - Position of the glue

- Conveyor
 - Transports the boards from Pick-and-place machine to soldering maschine
 - Problem: Board is completely filled with tiles
 - \rightarrow Transportation is not possible

selective soldering would take 3-8s per soldering position (x144 soldering positions per board)

- \rightarrow Wave soldering machine
 - Fastest soldering technique

Wave soldering machine

https://www.youtube.com/watch?v=inHzaJIE7-4

UNIVERSITÄT MAINZ

- Wave soldering machine
 - Problem: Board is allready assembled
 - \rightarrow We need a soldering mask

Soldering mask

21

10.09.2013

Mass Assembly

- Wave soldering machine
 - Soldering process defines (and limits) the design of the HBU board and the structure of the SiPM pins:
 - the diameter of the SiPM pins and bore holes
 - position of components
 - SiPM pin hole position
 - \rightarrow Modifications of the HBU board is needed

SiPM pin-, boreholediameter and shape

- pin holes should be 3 mm larger than the pins
- We also want maximally robust pins
 - Pins could be pushed away from the solder → Pins with ~ 0,5 mm diameter are optimal
 - The pin length should be around 1 mm outside the hole

SiPM pin-, boreholediameter and shape

- Recommended Area around the SiPM holes without any SMD components: 3 mm radius
- Asymmetric Area around the SiPM holes without SMD components are possible with a minimum radius of 1 mm and 3 mm on the other side

JOHANNES GI

MAINZ

Additional advice:

Components near the SiPM connectors should be placed with the short side to the holes

- → The components stay fixed on one side, even if one pad is heated up
- → components near the pin holes can't be soldered out

good

bad

Omega

Bridge effect

In this orientation \rightarrow problematic for some wave soldering machines

10.09.2013

Additional tests for soldering

- Temperature tests for every component (simulation of Soldering wave)
- If HBU board could be change → Create a soldering mask and soldering tests

SMD SiPMs

- With SMD SiPMs the assembling would be easier
 - We won't need a soldering machine and the THT optimization
 - More s. next presentation from Yong Liu

- Functionality tests
 - Fully assembled HBU test set-up (with LEDs on the Board)
 - Currently setting up AHCAL DAQ for fast testing

Conclusion

- Procedure for fast mass assembly has been defined
- Mass assembly requires numerous design modifications
- Initial tests sucessful
- Full production line will be set up in Mainz for demonstrating mass assembly with the large prototype

Thank you for your attention!

Backup

Reference labels

- Finetuning advice: More reference labels on the perforated frame (Mydata)
 - Existing labels can't be recognized after assembling
 - Reference labels should be on the side of the tiles and they should be on the frame

Tiles/SiPM

- Mounting of Hamburg tile on HBU board:
 - Black surface of the wrapped tile→
 optical capture with cameras is easier to realize

Tiles/SiPM

- Mounting of Hamburg tile on HBU board:
 - No tests till now for wrapped surface (tests of suction cup of pick-and-place machine)

SiPM pin shape

 Round pins are easy, rectangular pins are more difficult to solder (distances in the hole aren't constant)

