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Abstract

In this report, we present a novel feature detection technique for un-
structured point clouds. We introduce a generalized concept of geometric
features that detects locally uniquely identifiable keypoints as centroids
of area with locally minimal slippage. We extend the concept to mul-
tiple scales and extract features using multi-scale mean shift clustering.
In order to validate matches between feature points, we employ a two
stage technique that first sorts out unlikely matches, followed by an ap-
proximate alignment between remaining features by a rotational cross-
correlation analysis and a local iterative closest point (ICP) registration.
The resulting residuals are then used as final similarity measure. The
proposed combination of techniques results in a robust and reliable corre-
spondence detection technique that yields registration results in situations
where previous techniques are not able to detect usable feature correspon-
dences. We provide a detailed empirical analysis of the method, and apply
the technique to global registration, symmetry detection and deformable
matching problems.



1 Introduction

Feature detection techniques have become an indispensible tool in geometry pro-
cessing. The task of a feature detector is to identify a set of representative re-
gions on a geometric object that are subsequently used to solve a geometric prob-
lem more efficiently on this sparse, discrete set. The main application area of
geometric features is solving correspondence problems, such as global rigid reg-
istration [HFG*06, GMGP05, LG05, LGB06, HHO1, MGGP06|, deformable reg-
istration [HTB03, ASPT04, WJH" 07| or symmetry detection [MGP06,PSG™*06,
MSHS06,SKS06]. Reducing the problem to a sparse set of correspondence can-
didates is often a key concept for solving such problems efficiently.

The task of a feature detection algorithm can be split into two stages: First,
a set of keypoints is identified that are locally unique. This means, if the same
feature detection algorithm is applied to a similar piece of geometry, it will
retrieve the same keypoint at the same position. The local area associated
with each keypoint in order to define this property is called a geometric fea-
ture. Second, a feature descriptor function is defined that allows for comparing
two different such features. The function descriptor gets two features as input
(maybe including precomputed descriptive values per feature, called descrip-
tors) and outputs a measure of distance, which can be used to establish initial
correspondence candidates. Typically, a subsequent global optimization algo-
rithm will be employed to verify the candidate correspondences obtained by
local feature comparison from a more global point of view. Common techniques
for solving global correspondence problems are RANSAC- or forward search-
based sampling techniques [FB87, HFGT06], belief-propagation based matching
techniques [ASPT04] and spectral graph matching [LHO05]. For our prototype
applications, we will use the latter technique that yields very good results and
is easy to implement.

An important problem for feature-based techniques is the ability to reliably
detect a sufficient number of keypoints: For traditional applications such as per-
forming rigid registration of piecewise scanned point clouds [HFG*06, MGGP06,
GMGPO05,LG05, LGB06, HHO1], a small number of correctly established corre-
spondences is sufficient, as a rigid motion is uniquely determined by specify-
ing point-to-point correspondences between two triples of non-collinear points.
However, some application areas of geometry processing that recently gained
importance require many more correspondences: For example, deformable align-
ment of surfaces [WJHT07, BRO7] has many more degrees of freedom so that
a larger number of correspondences, covering all parts of the object, is neces-
sary to make the alignment problem globally well-defined. In our experience,
this can be a serious issue for traditional keypoint detection techniques. An-
other interesting recent research direction is symmetry detection, where cor-
respondences within one and the same object are established in order to re-
veal redundancies and reoccurring parts within the object. Again, for such an
application, a much larger number of correspondences is necessary. Most es-
tablished feature detection techniques detect keypoints at points of maximum
curvature [Low03, GMGP05, LG05, YF02, WG02|. For the aforementioned ap-
plication areas, this notion is often not general enough so that an insufficient
number of keypoints is extracted for many input models.

The objective of this report is to generalize the notion of keypoints to include
as many locally uniquely localizable regions as possible without compromising



stability and reliability of detection. The basic idea of our technique is that a
feature must have the property that within a local neighborhood the position of
the keypoint must be uniquely defined so that the notion of feature correspon-
dences is locally well defined. In addition, for many applications it is also useful
to have a well-defined rotational alignment in order to establish correspondences
with corresponding coordinate frames rather than just point-to-point correspon-
dences. This means that the rotational degrees of freedom should also be well
defined for the feature within its local neighborhood.

In order to determine such points we examine the local geometry at each
surface point contained within a ball of fixed radius. The radius determines the
scale at which the feature detection takes place. In order to detect regions with
well defined translation and rotation, we employ the slippage analysis of Gelfand
et al. [GGO04] to compute a measure of how well constrained an auto-alignment
problem of the feature regions is. Keypoints are then defined as local maxima
of this constraintness measure. We extract these maxima using a meanshift
clustering algorithm and verify the stability by filtering out points where the
maxima are not pronounced enough to allow a stable detection. This criterion
for determining keypoints is more general than just looking for local maxima
in curvature of the geometry itself; a piece of geometry containing a complex
geometric pattern might be strongly constrained in its auto-alignment although
it might appear flat in average, not providing a local extremum in curvature.
As the local well-constraintness of the alignment in translation (and, depending
on the application, also rotation) is a necessary criterion for a geometrically
defined feature, our approach also defines a natural and very general class of
features. In order to eliminate the free radius parameter of the detection radius,
we generalize our technique to multi-scale feature detection and detect maxima
in scale space, adopting the conceptual framework of SIFT keypoint detection
[Low03].

The novel notion of general keypoint detection based on a slippage analysis
is the key idea and main contribution of this report. We complement our tech-
nique by adding a similarly general descriptor technique: In order to compute
descriptors for the obtained features, we employ a two stage filtering approach:
First, we compute local curvature histograms of the feature area [GGGZ05]
to obtain a filtering criterion to rapidly reject unlikely matches. Afterwards,
for the smaller set of remaining matches, we employ a local iterated closest
points (ICP) alignment to compute a more precise matching score [HFGT06].
In order to make this alignment computation fast and reliable, we employ a
cross-correlation technique based on the fast Fourier transform (FFT) in order
to compute a good initial rotational alignment.

We demonstrate the benefits of our technique by examining example appli-
cations in both rigid and non-rigid alignment, and also examine the potential for
symmetry detection based on generalized keypoints. In addition, we provide a
thorough empirical analysis of stability and matching precision of the proposed
technique in comparison to related work.

2 Related Work

Feature detection for geometric models has first been examined in the context of
rigid registration. Gelfand et al. [GMGPO05] base their technique on curvature
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Figure 1: Overview of our feature matching pipline: We compute keypoints as
local maxima of local slippage using mean-shift clustering. Feature matching
aligns detected features using a curvature histogram based filter, an FFT-based
rotational alignment and an ICP registration. A global validation algorithm
extracts a consistent set of matches.

on multiple scales and filter descriptors by preferring features that are more
unique on each of the pieces to be registered. A drawback of their feature detec-
tion approach is that keypoints might not be well constrained along curves of
constant mean curvature, so that random variations in feature positions might
result. In addition, a local measure of curvature alone has only limited discrimi-
native power. In contrast, Huber and Hebert choose a dense sampling approach:
they compute a surface descriptor (spin-images) for every vertex on a uniformly
sampled subset of the input meshes and use a RANSAC technique to find cor-
responding vertices with similar descriptors [HHO1|. The number of necessary
samples can be reduced by referring points with specific surface properties like
high curvature [YF02] or bitangent points [WG02].

The method proposed by Li and Guskov [LGO05] adapts the concept of SIFT-
Features [Low03] to geometric data: They build a multi-scale representation of
the input data and extract local extrema in the difference levels as features
points. Our work is a generalization of their technique to a more general notion
of features. Huang et al. proposed a method for reassembling fractured objects
using global geometric registration [HFGT06]. They compute a set of surface
signatures for every data point and apply a flooding based clustering algorithm
to extract regions of similar signature. The centroids of the resulting surface
patches are used as features, and the main axis determine the rotational align-
ment. The technique is performed on multiple scales to create a large number
of potential features and descriptors. For feature matching, a series of filtering
heuristics is used to exclude obvious mismatches, including ICP-based align-
ment as final step. Global verification of the alignment is done with statistical
forward search. The drawback of the approach is that the region growing based
feature extraction is likely to produce a large number of both false positive
and false negative matches, as the connectivity of the surface patches can easily
change, leading to non-matching features. In their target application, this is not
an issue, as only a small number of final matches are necessary and the forward
search based global verification is able to compensate for this drawback easily.



In contrast, our method targets on finding reliable and reproducible keypoints;
this property is important to reduce the chance of missing keypoints in prob-
lematic areas that can be decisive for more general correspondence problems
such as deformable matching.

Geometry descriptors: As we already have a reference key point, the
main requirement for a descriptor is typically rotational invariance (in the more
general case of deformable matching, a local rigid matching is usually assumed
to approximate the local effect of the global deformation). There are a large
number of techniques to describe geometry with a small digest of data. Many of
these matching techniques have been designed for efficient object retrieval from
large data bases. Thus, in order to perform a large number of comparisons effi-
ciently, these methods typically employ mappings of geometric objects to small
vectors of characteristic numbers: [KFR03] employs power spectra of a spheri-
cal harmonics description of the geometry to compute a rotationally invariant
geometry descriptor. [NKO03] extends this approach to Zernike polynomials to
reduce the invariant space that maps to the same descriptor. [GGGZ05] consider
maps of local curvature values; we use a similar approach at the first stage of
our filtering cascade. Another standard technique are spin images [JH99, HHO1]
that compute an average trace of geometry intersecting a plane rotating around
the surface normal. A related approach based on spherical harmonics has been
proposed by [FHKT04]. [MGGP06| propose a matching technique based on min-
hashing that also allows for partial object matching. Our technique aims at
geometry processing applications. In this context, we opt for a direct alignment
computation to compare geometric regions, which yields optimal accuracy. In
order to speed up the computation, we filter out most non-matching regions us-
ing a descriptor similar to [GGGZ05]. ICP alignment with filtering for feature
matching was initially proposed by [HFGT06]; we complement their approach
by efficient and more reliable rotational and translational prealignment.

3 Multi-scale Slippage Keypoints

In this section, we describe how keypoints are extracted. We start by briefly
reviewing the slippage analysis technique of Gelfand et al. [GG04]. Afterwards,
we discuss how this is used for extracting keypoints from surfaces.

3.1 Local Slippage Analysis

Slippage analysis poses the problem whether a rigid matching of a piece of sur-
face with itself is well constrained. Conceptually, a point-to-plane ICP error
function, dependent on 3 rotation and 3 translation variables, is setup for a
configuration where the surface is perfectly aligned with itself. Then, the Hes-
sian matrix of this objective function reveals directions in which the problem
is not well constrained: The eigenvectors of the zero eigenvalues of this matrix
correspond to transformations that map the surface onto itself in an infinites-
imally sense (instantaneous motion). For example, for a cylinder mapping to
itself, there are one rotational and one translational degree of freedom, resulting
in two eigenvectors with zero eigenvalue. The cylinder can be rotated around
its rotational symmetry axis and shifted along this axis without changing its
shape locally. In general, non-zero eigenvalues are a necessary condition for the



auto-alignment problem being well defined. For non-perfect data sets, such as
scanned point clouds, we cannot expect zero eigenvalues but small eigenvalues
indicate an underconstrained auto-alignment. As shown in , the hessian matrix
of the alignment problem is given by:
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where ¢; = (p; X n;). p; refers to the i-th surface point of a surface discretization
and n; refers to its normal. Please note that as slippage is derived from a
point-to-plane matching, normal information is necessary to setup the Hessian
matrix.

3.2 Feature Point Extraction

In order to apply this analysis technique for our purpose, we first discretize
the surface into a cloud of points. In addition, we also have to compute sur-
face normals. If our input is given as a triangle mesh, we start by computing
a dense point cloud by a uniform random sampling of the surface. Next, for
both triangle and point cloud input, we continue with a Poisson-disc resampling
step that results in a uniform, well distributed sampling of the surface [WS02].
The position of the resampled points is projected back on a quadratic moving
least squares surface fit of the original data points to optimize the representa-
tion accuracy. After this computation, a uniform surface sampling is obtained
with known sampling spacing. In case of triangle meshes, we retain the original
triangle normals as initial normals. For point clouds, we compute normal infor-
mation by a PCA analysis. We weight the contributions of neighboring points
with a Gaussian windowing function with a standard deviation of 1.5 times the
median point spacing.

Subsequently, we go through each point of our surface discretization and
compute the local slippage analysis of a spherical neighborhood of points of a
fixed radius 20. For correctly band limiting the computation, we add a Gaus-
sian weighting window with standard deviation o to each term of each surface
point in Equation (1), i.e. the neighborhood radius is chosen to truncate this
Gaussian window as soon as the weighting function becomes negligibly small.
Before slippage computation, we normalize the extents of the region considered
to a unit bounding box centered at the origin. This makes sure that rotational
and translational degrees of freedom are always measured with the same relative
weighting. From the eigenvalue decomposition, we consider only the smallest
eigenvalue \g as a measure for constraintness. In order to make the measure
invariant under the amount of local area gathered, we additionally divide by the
largest eigenvalue A\; which is guaranteed to be non-zero (any non-empty sur-
face is at least translationally constrained in one normal direction). A low value
of this ratio indicates slippable motion in at least one direction; a high value
indicates a more constrained rigid motion. Please note that using the smallest
eigenvalue of the Hessian (1) means that we will exclude keypoints that are
not rotationally well constrained, such as rotationally symmetric bumps. It is
straightforward to setup a similar slippage analysis problem that ignores rota-
tional degrees of freedom altogether in order to extract translationally invariant
keypoints only. For clarity of exposition, we restrict ourselves to the case of ro-



tationally well-constrained keypoints in this report. For the rest of our pipeline,
we stick to this scenario and exclude features that are rotationally ambiguous.
Filtering out points that are slippable under infinitesimal rotations is thus the
first step, as this violates a necessary condition for unique matching.

b) RS d) O

Figure 2: The normal smoothing problem (the small graphs show the slippage
values schematically): Fine scale geometry variation can lead to low slippage
values due to varying normals (a); at coarser scales, this is undesirable. Smooth-
ing the normals resolves this issue (c). For large scale features (b), the normal
smoothing will still preserve the detected feature (d).

Next, we consider the problem of estimating slippage values for multiple
scales. At this point, we are facing the problem of coupling the normal varia-
tion to the geometric level of detail: In a multi-scale analysis, our objective is
to examine geometric features in multiple frequency bands. For a coarse scale
analysis, small scale features should not be taken into account. However, the
slippage analysis is formulated as constraining rigid motion by aligning planes
defined by points and normals. Therefore, small scale variations in the normals
can make the auto-alignment strongly constrained although this is not war-
ranted at the frequency level considered. The problem is illustrated in figure
2: The plane in figure (a) is non-slippable due to normal variations at a much
smaller scale. In order to couple the normals to the scale of considerations, we
have to band-limit the frequency of normal variation accordingly (figure 2 (c)).
We do this by filtering the normals with a Gaussian low-pass filter of support
proportional to the size of the region considered. Small scale variations will be
removed, while large scale geometric features will still be retained (2 (b,d)) In
experiments, it turns out that the best results are obtained from a rather ag-
gressive filtering strategy, where only relatively low frequency normal variations
are retained at each scale (we use ogmootn = 1.250). Please note that we do
not need to filter the geometry in a similar way, as point positions with small
scale noise will still produce realisticly slippable results as long as the normals
are smoothed correctly. Another way to formulate this fact is that normals
and geometric positions are measured in different units, where normals are not
affected by scaling while positions are.

Repeated subsampling, normal filtering and slippage evaluation will yield a
sequence of scales with support o; = oo F* (F > 1). In the following, we denote
0;.s the slippage indicator resulting from the local slippage analysis computed



at point x; with support ;. In the scale-space domain we now search for
local maxima. A natural technique for extracting this information in a robust
way in the presence of noise, is mean shift clustering [CMO02]. This technique
first convolves the data points with a low-pass filter kernel and then performs
gradient ascend to find maxima. All points ascending to the same maximum are
comprised in the same cluster, and the location of the maximum becomes our
representative key point. In our case, we employ a standard Gaussian windowing
function as mean shift kernel and set the support radius to a fixed value of
2 times the median sampling spacing. In scale direction, we use a Gaussian
window of standard deviation 0.5, where 1.0 corresponds to one scale level F'.
As we are only interested in the location of the maxima, we can optimize the
computation: We first compute candidate points at discrete positions that are
local maxima on each scale after filtering in the spatial domain only. Afterwards,
we start a gradient ascend in scale-space to find final maxima at continuous
spatial position and continuous scale values. Doublets and diverging points
are removed at that stage. In a final step, we evaluate how well determined
the extracted maxima are. We estimate the second order derivatives by finite
differencing and delete points with small curvature (below a threshold H,,;y)
in the slippage value, as these points will not be detected reliably under the
influence of noise and small scale random variations of geometry.

4 Descriptors and Feature Matching

Having determined a set of keypoints, we need to compare the local geometric
neighborhood in order to determine candidate correspondences. In our case,
the local neighborhood always corresponds to the geometry contained within a
fixed distance of 10-15 times the median point distance. In order to match the
generality of the keypoint detector, our feature comparison function is based
on a direct geometric comparison. We proceed in three steps: Signature based
pruning, rotational alignment, and geometric alignment.

4.1 Signature-based Pruning

As a quick test to reduce the number of matching candidates, and thus reduce
the number of the later, more expensive alignment steps, we compute local fea-
ture signatures [AKKS99]. The main idea is to compute histograms of surface
attributes over concentric rings around the keypoint. By construction, such a
signature is rotationally invariant. As attribute value, we will use mean curva-
ture; it is straightforward to generalize this technique in order to use additional
attributes such as surface color, if available.

Let us assume, that we have an attribute a; defined for every point x; of
the data set that is invariant under rotation and translation, such as mean
curvature. Then, a pair of corresponding features should have roughly the same
distributions of this attribute in their environments. Given a feature point f,
we denote a ring histogram H.,. as a histogram of the attributes a; weighted with
a spatial function w;:

Hr(f) = {H’l‘b(f)|b € {1?' .- aNb}’} (2)



Hy,(f) = 3 Bolaiwr (2 — 1)
icl
A ring histogram contains N; bins. By is a function which returns 1, if the given
attribute a; falls into bin b (0 otherwise). We can assume, that the euclidean
distance between f and x; is roughly equal for corresponding features. We
take this into account by computing multiple histograms with different spatial
support:

wr(z) = max(0, A\ |r — x|) (3)

For stability reasons, we smooth the histograms with a triangle filter. The sig-
natures are invariant under rigid transformations, easy to compute and robust
to spatial noise. In all of our examples, we use the mean curvature as attribute:
For every point in the data set, we precompute an approximation of the cur-
vature by fitting a quadratic patch onto the neighboring data points. We use
the computed normal to define a local tangent coordinate system and compute
a weighted least-squares fit of a bivariate quadratic polynomial. From the re-
sulting coefficients, we compute the mean curvature analytically. In order to
compare two signatures, we just compare the Euclidian distance of the scalar
vectors formed by the corresponding histograms and reject the match if a cer-
tain threshold is exceeded. Implicitly, this criterion will put larger emphasize
on the outer rings as the histogram entries will consist of larger numbers due
to the larger number of neighboring points counted. This is desirable, because
more area is covered by these rings.

4.2 Local Feature Alignment

Having rejected most incompatible correspondences by comparing the signature
vectors we can still expect to retain a small number of false positive matches,
as the histogram criterion is not injective. Therefore we proceed by a geometric
registration of the features and compare the residual of the match.

Rotational alignment: The first problem we are facing is a correct ro-
tational alignment of the features. So far, only the translation is known due
to the keypoints, which is not sufficient to guarantee the convergence of the
later ICP alignment step. Huang et al. address this problem by computing
a principal component analysis from a feature cluster and used the resulting
eigenvectors for alignment [HFG106]. Another approach is to use the principal
frame defined be the normal and the directions of maximal and minimal cur-
vature [LGB06, MGPO06], and drop features with ambiguous principal frames.
Both techniques have the drawback that they might return no well-defined result
in rotationally symmetric situations, even though the auto-alignment problem
is still well defined. In order to improve upon this, we employ a spectral cross-
correlation technique: We assign a orthogonal local frame F; = (u;,v;,n;) to
a feature f;, where n; is the feature normal and u;,v; are arbitrary orthogonal
tangents. Then we transform the local environment into this frame and consider
the surface as 2D height field. When two features match then there exists at
least one rotation angle o that maximizes the scalar product

argmax (Hy, Ry, (Hz)) (4)

g



where Hy and Hj are height fields and R, (H) is a transformation which rotates
the height field H by « around the normal. Since we have only a sparse set of
surface points, we need to produce a dense representation for comparison. For
this purpose, we use the splat-pull-push method proposed by [GGSC96] to create
a regularly sampled array of height values. After resampling, we perform a polar
coordinate transformation of the values, i.e. we resample the values into an ad-
ditional array that is indexed by angle and distance to the origin. For each ring
of constant distance, the cross correlation function defined above corresponds
over the angle of rotation to the 1D convolution of the two signal vectors. As
we are looking for the maximum of this value over all rings, we sum up the
1D convolution functions. Each such convolution can be computed efficiently
in the Fourier domain [CM87]: For each feature, we precompute a fast Fourier
transform of its height field values of constant distance, obtained from the polar
coordinates transform. Then, a point-wise multiplication of the Fourier coeffi-
cients yields the convolution. Each rotational alignment can now be performed
in O(n) time, where n is the number of entries of the transformed height field.
Each feature needs O(nlogn) precomputation. This is much more efficient than
performing an O(n?) brute force test for each of the potentially quadratic num-
ber of candidate feature matches. For subpixel accuracy, we compute a local
parabolic fit and refine the peak of the rotational correlation function. Hav-
ing found one or more peaks, we compute the transformation between the two
features with respect to the estimated angle. For most comparison purpose it
is sufficient to take the biggest peak only. Some features however have multi-
ple peaks due to similar structures. We reject all peaks that are less than 0.8
times the maximum peak. In case we still find multiple rotational matching
candidates, we dismiss the keypoint altogether, as it can be considered to be
not rotationally well constrained. Alternatively, it is also possible to keep and
test multiple alignments, if rotationally uniqueness is not required for the target
application.

Geometric alignment (ICP): With the estimated approximate transfor-
mations, we perform local point-to-plane ICP alignment [CM92] and take the
minimum alignment residual (average of the point to plane distances) as feature
distance. If the ICP alignment does not converge, we reject the correspondence
pair. Figure 3 shows an approximate alignment result with two corresponding
features on the buddha data set.

5 Applications

In order to evaluate the practical performance of the proposed feature detection
scheme, we have implemented three prototypical example applications: global
rigid registration, global deformable registration, and a simple feature based
symmetry browser.

5.1 Global Rigid Registration

For global rigid registration, we first compute keypoints and matching features
as described above. After that, we use a global validation algorithm to extract a
consistent set. We employ the spectral graph matching technique of Leordeanu
and Hebert [LHO5|. The algorithm considers pairs of correspondences and as-
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Figure 3: Approximate alignment of two features from different views of the
buddha data set: We transform the parametric images (height fields) of the
feature environments into the polar domain, use the phase correlation technique
to find a good initial transformation (red coordinate frame) and peform local
ICP to refine the transformation (yellow).

signs a plausibility score to these pairs based on the difference in Euclidian
distance on source and target shape. This yields a compatibility matrix. The
diagonal elements of this matrix refer to compatibility of a correspondence with
itself; we insert normalized residuals from the ICP matching stage in order to
evaluate the plausibility of the correspondence itself. Normalization and map-
ping of distance discrepancies are handled exactly as described in the original
paper [LHO5]. Next, the eigenvector with the largest eigenvalue is computed
using a power iteration. Large entries in this vector correspond to correspon-
dences that are compatible to a large set of other correspondences, while outlier
correspondences receive low scores. A final quantization step (again following
closely the original paper), sets the eigenvector entries to zero and one, deleting
incompatible matches for which the Euclidian distance differs by more than a
fixed threshold. Lastly, we compute a global rigid alignment from the validated
correspondences using standard SVD-based matrix decomposition. We show
the alignment results without a final ICP alignment in order accurately depict
the obtained registration accuracy from feature matching only.

Figure 4: Results of the registration technique for the case of global rigid align-
ment.
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5.2 Deformable Registration

Our deformable matching application uses exactly the same algorithm as the
rigid case, just substituting geodesic distances along the surface for the Euclidian
distances, as we expect the deformation to be at least approximately isometric
[ASP*04]. Geodesic distances are computed in two steps: First, we form a
graph that connects each surface point to its 20 nearest neighbors. Second, we
run a standard Dijkstra algorithm to compute the distance from each keypoint
to all other surface points, which yields approximate geodesic distances between
all keypoints.

5.3 Symmetry Detection

As a third prototypical example application, we have implemented a simple
symmetry browser: The user may select on feature on the object and the ap-
plication returns all features that have been found on the same object with
a matching local neighborhood. We do not implement a full, dense symme-
try detection algorithm at this point, as this is out of scope of this paper,
see [MGP06, PSGT06, MSHS06, SKS06] for more elaborated algorithms. How-
ever, feature matching is used as a subalgorithm in several of the existing de-
tection techniques so that we would like to examine how reliably we can find
reoccurring features within one and the same object.

Figure 5: Symmetry example: features which are symmetric to a manually
selected feature are shown in the same color (pale brown is unassigned).

12
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Figure 6: Result of the registration technique with deformable objects.

6 Results

6.1 Feature Stability

In real world scenarios we have to deal with noise in the data. We investigate this
in the following test. Comparable to [LGO05], we add uniform noise to the point
positions in the normal direction with amplitude 0.5% of the maximum side
length of the bounding box and perturb the normals between —0.05 and 0.05.
We compare the features found in the noisy data set with the original ones by
counting the number of corresponding features. Two features correspond, when
their Euclidian distance is less than 0/2 and their scale differ less than 1.

Data ‘ points ‘ scales ‘ Smoothing ‘ Slippage ‘ Meanshift ‘ Total
human 89147 10 20 80 31 131
bunny 40256 10 10 30 9 49
buddha 85000 6 10 26 18 54
thai-elephants | 592084 4 40 80 127 247

Table 1: Timings for feature detection on a representative scan of several data
sets (in seconds).
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Figure 7: Comparison between DoG features (left) and slippage features (right).

Figure 10 shows the result of this comparison for the well known Stanford
bunny and happy Buddha datasets. On the coarser scales one can see that most
features can establish a correct correspondence. The peak in the last scale level
can be explained by the multi-scale mean shift procedure: all features detected
in the coarsest scale shift in the lower ones because the density still increases.
If we would compute the a further scale level, these features would appear on
their proper scale, but the truncation of the scale level makes all larger scale
features occur at the final scale.

As we use the same technique for the stability analysis, our results are di-
rectly comparable to the curves in [LGO05|. We obtain a similar stability of our
generalized features, which shows that the generalization does not harm the
stability of the results.

We also compare the feature matching results to those form [LGO05]. For this,
we have reimplemented the technique closely following the description in the
paper. Figure 9 shows the results of our technique and the difference-of-gaussian
(DoG) approach. Notice how the slippage features appear robustly at the ends
of the notch while the other approach is unable to establish stable features,
especially under noise (we used a simple thresholding to remove noisy features
on both techniques, with thresholds decreasing from left to right). This behavior
is expected, as a maximum curvature criterion of the DoG features is not well
suited for lines of constant curvature. This effect can frequently be observed in
a real data example, such as the well-known Thai Statue data set depicted in
figure 8. Please note that a more stable feature detection is not restricted to
the marks on the elephants trunk but we also obtain more and more reliable
matches at the ornamental structures. This improved performance is critical for
deformable matching (figure 7): Using a threshold that yields stable and reliable
keypoints, the DoG features are not able to detect keypoints on all extremities of
the model. If we decrease the threshold such that correspondences are detected
everywhere, the positions of the keypoints become more random and unstable
so that identifying corresponding points becomes much more complicated.
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Figure 8: Comparison between DoG features (left) and slippage features (right)
on a scanned data set.

6.2 Global Registration

We tested our registration pipeline for rigid alignment on the datasets bunny
(10 views) and happy buddha (15 views). The most time consuming step is the
computation of the slippage features. Timings can be seen in table 1 for a single
view. For rigid registration we do not need to perform the full feature matching
pipeline: We have skipped the ICP-based local alignment and used only the
histogram based signatures to establish a set of initial correspondences. False
positive matches are handled by the global validation algorithm. The results are
shown in figure 4. Please note that we obtain fairly accurate global registration
results without an ICP alignment of the parts; this shows that keypoints are
retrieved accurately at corresponding positions.

6.3 Deformable Registration

We applied our technique to a set of scanned humans. Each individual was
scanned in several poses. We established a set of correspondences between two
randomly selected poses. The results are shown in figure 6. Unfortunately,
the usage agreement of the data set requires not to show faces of the scanned
individuals, so that we have to blur out the corresponding parts of the im-
ages. Nevertheless, we obtain a similarly consistent registration in the facial
area. Notice that every extremity receives at least one correspondence, which
is difficult to obtain with feature detectures that look for maximums in surface
curvature. These global correspondences could be used as guidance for local,
dense deformable registration algorithms such as [WJHT07,BR07].

6.4 Computational Costs

The runtime of our keypoint detection technique is comparable to that of the
DoG features in [LG05], depending on the number of scales and points. Table
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Figure 9: Comparison between DoG features (top) and slippage features (bot-
tom) on a test example. Original example data (left), two noisy copies (mid-

dle,right).
1 shows the timings for the individual stages of the algorithm.

6.5 Symmetry Detection

We tested our simple symmetry detection scheme with the elefants of the thai
statue data set. We selected a few features and detected successfully several
symmetric parts. Figure 5 shows the results. Notice that even in complicated
parts like the toes and the beak symmetries could be found.
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Figure 10: Feature stability for the datasets happy buddha (top) and bunny
(bottom). All features (blue), features with correct correspondences (red).
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7 Conclusions and Future Work

In this paper, we have presented a novel keypoint detection technique based on
a local slippage analysis. The main advantage of our approach over the DoG
geometric features we build our approach upon is the ability to detect reliable key
points in more general situations than traditional techniques that these previous
techniques. Additionally, we present a feature matching technique based on
geometric matching that is able to accurately find feature correspondences of
these generalized features. Overall, we obtain a conceptually clean framework to
detect the very general class of feature correspondences characterized by well-
defined translational and rotational geometry matching, avoiding any further
assumptions such as local maxima in surface curvature. In future work, we
would like to apply our technique to more sophisticated symmetry detection
in geometric objects by considering graphs of features and maximal consistent
subgraphs. In addition, we would also like to examine further the potential in
deformable matching by complementing our prototype matching technique with
a more general, multi-view global validation technique.
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