Generalized Intrinsic Symmetry
Detection

Alexander Berner, Martin Bokeloh,
Michael Wand, Andreas Schilling,
Hans-Peter Seidel

MPI-1-2009-4-005 August 2009

Authors’ Addresses

Alexander Berner
Max-Planck-Institut fir Informatik
Saarbriicken, Germany

Martin Bokeloh
Max-Planck-Institut fir Informatik
Saarbriicken, Germany

Michael Wand
Max-Planck-Institut fiur Informatik
Saarbriicken, Germany

Andreas Schilling
WSI / GRIS, Tiibingen University
72076 Tiibingen, Germany

Hans-Peter Seidel
Max-Planck-Institut fur Informatik
Saarbriicken, Germany

Abstract

In this paper, we address the problem of detecting partial symmetries in 3D ob-
jects. In contrast to previous work, our algorithm is able to match deformed sym-
metric parts: We first develop an algorithm for the case of approximately isometric
deformations, based on matching graphs of surface feature lines that are annotated
with intrinsic geometric properties. The sensitivity to non-isometry is controlled
by tolerance parameters for each such annotation. Using large tolerance values
for some of these annotations and a robust matching of the graph topology yields
a more general symmetry detection algorithm that can detect similarities in struc-
tures that have undergone strong deformations. This approach for the first time
allows for detecting partial intrinsic as well as more general, non-isometric sym-
metries. We evaluate the recognition performance of our technique for a number
synthetic and real-world scanner data sets.

Keywords

symmetry detection, shape matching, shape understanding

Contents

1 Introduction
2 Related Work
3 Overview

4 Feature Detection
4.1 Extrinsic Features
4.2 Intrinsic Features

5 Graph Matching
5.1 ImnerLoop
52 OuterLoop

6 Deformable Shape Matching

7 Implementation and Results
7.1 Discussion and Limitations

8 Conclusion and Future Work

References

12
12
15

16

19
25

26

27

1 Introduction

Detection of symmetries in 3D objects has recently received a lot of attention in
the geometry processing literature [Mitra et al., 2006; Podolak et al., 2006; Loy &
Eklundh, 2006; Mitra et al., 2007; Pauly et al., 2008]. The goal of this line of work
is to discover structural redundancies in objects in order to better “understand”
their shape, which is helpful for several applications such as compression, shape
completion, or providing high-level tools for shape editing. In a general sense, a
symmetry of an object S can be defined in the following way: We are looking for a
piece of geometry 2/ C S and a number of mapping functions f(*), that instantiate
this piece in multiple instances, thereby matching the original geometry up to
some error tolerance. Most of the previous work considers only reflections, rigid
mappings and sometimes uniform scaling as mapping functions. However, many
real-world objects show forms of structural redundancy that cannot be captured
by such simple affine maps. For example, different leaves of a plant might clearly
appear similar to a human observer, but often cannot be transformed into each
other by a global affine mapping. Similar types of symmetries are observed for
many objects such as different windows of a building or ornamental structures in
man-made sculptures.

. I AT Tl 2~y . . i ,
, 7?)' f/y Y D 4 y ‘

Figure 1.1: A 3D scan of a deformed plasticine sculpture with three snail figures.
Our algorithm detects symmetries by looking at constellations of surface feature
lines. This can be used for detecting deformable symmetries. Left: input data,
middle: feature lines overlay, right: detected symmetries.

In this paper, we address the problem of generalized symmetry detection. This

means, we want to find parts in object that might actually differ by a significant
deformation but, to a human observer, would still appear to be of the same kind.

2

We look at two variants of this problem, which are of increasing difficulty: First,
we look at isometric symmetries, where we can still assume that the deformations
of the instances approximately preserves intrinsic distances. Afterwards, we ex-
tend our technique to handle cases of more general, non-isometric deformations.
Our approach is based on feature matching. Effectively, feature extraction trans-
forms the complex, under-constrained geometric matching problem into a simpler
discrete graph matching problem. The features provide an abstraction that is much
more invariant under typical differences of symmetric instances than the original
geometry. Only in a second step, to obtain dense correspondences, we perform
continuous geometry matching using the matched features as constrained, using a
weak smoothness regularizer to interpolate in between. However, the symmetries
are actually defined by matching recurring structures of salient features.

As feature representation, we employ points and lines of maximum curvature, cor-
responding to creases on the surface. This choice is motivated by human percep-
tion: for humans, crease lines are particularly salient cues for shape recognition
[Kent et al., 1996]. This fact is not surprising, as for many real-world objects, a
few ridges and valleys already encode most of the geometric information [Ohtake
et al., 2004]. We annotate the network of feature curves with intrinsic properties
of these curves, such as length, intrinsic angles, and intrinsic curvature, which
are checked during graph matching. The resulting graph is invariant to isometric
deformations of the surface by construction. In particular, this immediately yields
an algorithm for partial intrinsic symmetry detection, which was not covered by
previous work. This is the first main contribution of this paper. By relaxing the
matching precision for these geometric attributes, i.e. permitting larger variations
in lengths, curvature or angles, we obtain the generalized symmetry detection al-
gorithm, that can still detect similar structures in objects that differ by significant
deformations. To the best of our knowledge, such generalized symmetry detec-
tion has not been attempted before. Describing a first approach to deal with this
problem is the second main contribution of this paper.

In order to evaluate the performance in practice, we apply the symmetry detection
technique to a number of data sets with symmetric structures of varying similarity,
ranging from rigid to not even isometrically similar. Even in the general case, we
are able to identify many of the important symmetries that are apparent to a human
observer fully automatically.

2 Related Work

The most successful group of symmetry detection techniques is based on trans-
formation voting [Mitra et al., 2006; Podolak et al., 2006; Loy & Eklundh, 2006;
Pauly et al., 2008]. The key idea of these techniques is to parametrize the transfor-
mation functions with a small number of parameters (such as translation, rotation,
scaling), find a set of candidate correspondences and vote for matching corre-
spondences in a Hough space. Transformation voting techniques are currently
probably the most frequently used, state of the art class of techniques. However,
it is not obvious how to generalize the concept to more complex transformations
that require many more parameters which might not be suitable for voting. For
example, the parameters of a general free form deformation affect the deformed
instances only locally so that voting in a global parameter space is not possible.
A similar parametrization problem also applies to geometric hashing [Lamdan
& Wolfson, 1988; Gal & Cohen-Or, 2006]. For other approaches, such as robust
auto-alignment [Simari et al., 2006], spherical harmonics analysis [Martinet et al.,
2006], or primitive fitting [Schnabel et al., 2008], it is so far also unclear how to
handle more general transformations.

Our algorithm is based on previous work that employs feature graph matching for
symmetry detection [Martinet, 2007; Berner et al., 2008; Bokeloh et al., 2009].
The main challenge of feature-based methods is that the recognition performance
depends decisively on that of the feature detection. [Berner et al., 2008] use re-
gions of minimum slippability and [Bokeloh e? al., 2009] employ crease lines as
features, which yield particularly useful cues for shape matching. Our algorithm
is also based on matching graphs of lines on surfaces. However, in contrast to
previous work, our new approach is not limited to rigid symmetries. This is a
non-trivial addition; the core step in [Bokeloh ez al., 2009] is a rigid alignment
of local line pattern using iterative-closest-lines (ICL), which is not applicable in
the case of deformed surfaces. In addition, we develop a robust randomized graph
matching strategy that is insensitive to a small amount of topological noise in the

graph. This problem is of no concern in [Berner et al., 2008], where absolute
positions can be estimated by rigid transformation matrices.

Only few authors have so far addressed the problem of detecting symmetries un-
der non-linear mappings: [Ovsjanikov et al., 2008] present a technique for de-
tecting global intrinsic symmetries of objects by analyzing eigenfunctions of the
Laplace-Beltrami operator of the surface. This approach reveals in a very elegant
way global symmetries based solely on intrinsic computations, and is therefore in-
variant to isometric deformations. However, due to the global nature of the eigen-
functions, it is unclear whether this approach can be used for partial symmetry
detection, which is the aim of our paper. [Raviv et al., 2007] detect symmetries by
finding feature point sets that preserve geodesic distances followed by a numerical
optimization of an isometric embedding by generalized multi-dimensional scaling
(GMDS) [Bronstein et al., 2006]. This approach does not take into account multi-
ple simultaneous symmetries but rather aims at finding global symmetries in order
to detect asymmetric irregularities. Both papers do not consider generalizations
beyond isometric matching.

[Lasowski et al., 2009] detect partial intrinsic symmetries in 3D geometry. Their
algorithm is based on a probabilistic formulation of partial shape matching: based
on a Markov random field model, they obtain a probability distribution over all
possible intrinsic matches of a shape to itself, which reveals the symmetry struc-
ture of the object. Then they approximate marginals of this distribution using
sumproduct loopy belief propagation. The approach scales quadratically in mem-
ory and cubically in computation time with model size. Therefore, despite its
formal elegance, the approach is not (yet) very practical. Furthermore, it is un-
clear how to formulate a generalization beyond the isometric setting.

In shape retrieval, topological matching techniques have been used to recognize
semantically similar shapes (see for example [Hilaga e al., 2001]). Recently,
[Zhang et al., 2008] prosed a shape matching technique based on comparing
graphs of extremity features and evaluating the induced deformation of a match,
aiming at matching shapes such as humans or animals. The technique is able
to compute matches between rather different objects, and is (to the best of our
knowledge) currently the only technique that addresses this problem from a global
optimization perspective. [Allen et al., 2003] match different human body shapes
using local optimization guided by (manually placed) markers, in a formulation
very similar to our final continuous matching step. [Teves et al., 2009] consider
pairwise isometric matching of deformable surfaces using graph matching, focus-
ing on robustness in the presence of holes and topological noise in the input sur-
faces. None of these techniques consider the case of detecting partial symmetries
within objects.

3 Overview

o G
3

Input Model Feature Graph Subgraph Matching Shape Matching Deformations

Figure 3.1: Pipeline - we first detect a network of feature lines on the object
surface. Next, we match the resulting graphs, which are annotated with intrinsic
properties. By adjusting the admissible tolerance, we can continuously move from
isometric to more general matching. The resulting discrete structures are used
to initialize a numerical deformable shape matching step, which yields a set of
deformation functions between symmetric instances as result.

First, we give a brief overview of our technique: The processing pipeline is shown
schematically in Figure 3.1. Our algorithm expects a point sampled representation
of the manifold as input. This representation allows us to handle both 3D scanner
data as well as triangle meshes, which can be easily sampled in a preprocessing
step (we employ a uniform Poisson disc sampling in these cases). The first step
of our processing pipeline is the detection of a network of feature lines on the
object surface, as detailed in Section 4. This yields a graph G = (V, £) of surface
lines, each of which is annotated by various geometric properties. In this graph,
we then look for recurring subgraphs (Section 5). Afterwards, we employ local
deformable shape matching (Section 6) to assign surface area to corresponding in-
stances and compute dense correspondences, using the discrete matches to guide
the alignment. We repeat this algorithm several times until no more significant
symmetries are found. As final output, we obtain a symmetry set R = {71, ..., 7, }
consisting of n instance sets Z;. Each instance is encoded by a single represen-
tative “urshape” U; and n; deformation functions fl-(j). U; — R3, j = 1...n; that
deform the urshape to match the original geometry. These deformation functions
establish dense correspondences between all surface pieces within an instance set.

4 Feature Detection

The goal of our paper is to detect symmetric objects in 3D shapes that appear
to be of the same type to a human observer, although they cannot necessarily
be mapped to each other by a simple transformation such as an affine map. In
order to achieve this invariance, we first transform the input data into a discrete
feature representation that captures the structure of an object in the topological
arrangement of these discrete elements.

In the following, we describe two different approaches, an extrinsic and a purely
intrinsic variant: The extrinsic feature detector (Subsection 4.1) is looking for
crease lines of maximal principal curvature. This is probably the “canonical
choice” for detecting feature lines: As detailed in [Ohtake er al., 2004], crease
lines contain the most important part of the overall geometric shape information
and correspond to perceptually important shape cues. This is particularly im-
portant in the case of generalized symmetries: Here, the pattern of crease lines
actually defines the notion of what is considered to be symmetric, in an attempt
to coarsely mimic human perception. The theoretical downside of this approach
is that principal curvatures are not isometrically invariant. In practice, this is usu-
ally no problem. Real-world variations in shapes are typically smooth such that
small scale extrinsic properties are approximately preserved as well. However,
for completeness, we also examine the case of a purely intrinsic feature definition
in Subsection 4.2, which makes our approach completely agnostic to isometric
deformations of the input.

4.1 Extrinsic Features

Our extrinsic feature detection framework was motivated by the “ridges and val-
ley” extraction approach by [Ohtake et al., 2004]. In principle, any feature de-
tection algorithm [Gumbhold et al., 2001; Pauly et al., 2003; Ohtake et al., 2004;

Figure 4.1: Feature detection pipeline. From top to bottom: product of k, and its
second derivative, patches after thresholding, shrunken to lines, resulting feature
graph.

Hildebrandt et al., 2005] could be used in conjunction with the rest of our symme-
try detection pipeline. As feature detection is not the main focus of our paper, we
opt for a simple and easy to implement technique. To get an intuition of typical
results, Figure 4.1 shows an overview of the results obtained for the “snails” data
set from Figure 1.1.

Feature Scale and Preprocessing: In the following, we describe how to extract
features at a fixed scale €4... Later, we will vary this scale in order to build a
multi-resolution representation. We assume we are given a sampled representa-
tion of a surface S. First, we resample the point set by deleting points that are
closer to their nearest neighbors than 0.25€,.,.. This step makes sure that the
costs for the subsequent computations do not become too large. Afterwards, we
form a “topology graph” that connects each point to its 12 nearest neighbors (ex-
cluding edges longer than 3¢, to make the construction robust to outliers). This
graph encodes the apparent topology of the manifold and is used in all subsequent
operations. Later in the algorithm, a subset of this graph will form the curve lines.

Curvature computation: Given a point p, we consider the curvature tensor C(p)
and its two eigenvalues k1 and ks, sorted by their absolute value. We estimate
these quantities via a quadratic moving least squares (MLS) fit [Alexa et al.,

Classification Voronoi Regions Additional Edge

Figure 4.2: Steps for building the feature graph. First, intersections and dead
ends are detected as feature points. Second, Voronoi regions on the Feature lines
are computed around all feature points in order to form a connectivity graph.
Lastly, small gaps are closed to make the algorithm more robust.

2003], using a Gaussian window of size €g.4. In order to make the resulting
values scale invariant, we normalize the local surface pieces by scaling by €.},
before MLS fitting. A crease line should maximize the larger of the two principal
curvatures k1. In particular, this implies that the first derivative of x; vanishes in
the direction of t; while the second derivative in this direction is non-zero. We
compute this second derivatives by again fitting a second order MLS approxima-
tion to the values of «; computed previously. We prefer this technique as it is
more robust than attempting to directly fit a 4th order representation (the number

of parameters to be estimated is much smaller, reducing overfitting).

Classification: We now classify candidate crease line points by looking at the
product of the absolute value of the first principal curvature and its second deriva-
tive in the principal direction. We threshold this quantity to obtain a set of curve
line candidates. In practice, the product of these two quantities is a quite robust
measure for crease line detection: Even varying the threshold value by a factor of
10 or 100 does not change the solution drastically. In contrast, a direct threshold-
ing of the curvature values is very sensitive to parameter setting; even changes by
a factor of 1.1 can lead to substantially different results.

Feature line shrinking: As aresult of the classification, we obtain narrow patches
of crease line points, connected by the topology graph. In order to obtain smooth,
linear curves, we apply a very simple filtering technique: For each point, we col-
lect all neighboring points within a graph distance of no more than 12¢,.,,. and
move each point to the centroid of this set. The centroid is then projected back
on the manifold using again a quadratic MLS surface fit. This smoothing is rather
simplistic and tends to oversmooth highly curved lines; however, as it does so
consistently, this is no problem in the context of our application.

Feature line graph: The next task is to convert the set of feature line points into
a graph of lines and crossings of such lines. We employ a simple sphere crossing
test: For each point on a feature line computed previously, we center a sphere

of radius Hé .4 around it and determine all pairs of connected curve points for
which the connecting edge in the topology graph intersects with the sphere. If
multiple such intersections occur within a distance of €., they are counted only
once. This test yields a classification of curve points into line segments (2 inter-
sections), dead ends (1 intersection) and crossings (3 or more intersections). For
dead ends and crossings, each connected component of the same type is converted
into a vertex in the graph. In order to form the graph edges, we simlutaneously
run Dijkstra’s algorithm starting from all vertices in order to compute Voronoi
regions in the graph of line feature points. Whenever two Voronoi regions meet,
their graph vertices are connected by an edge. The lengths of this edge is set
to the according Dijkstra distance. In addition, we estimate the average integral
geodesic curvature of the edge by fitting an MLS quadratic curve to each point
along the Dijkstra path and averaging the values. We will later use this measure
to qualitatively distinguish edges by their bending direction (left/right w.r.t. the
travel direction), which is often at least qualitatively preserved even in general,
non-isometric symmetries. We also compute the tangent vectors to the curve lines
at the graph vertices, using finite differences. They will later be used to check
intrinsic angles.

Figure 4.3: Line features for the turtle and the window data set.

Additional edges: In practice, the line feature detector is not always able to cor-
rectly detect intersections of line features, in particular if the height or depth of
the crease lines is rather shallow. Even if the crease line actually vanishes before
hitting another line, the human visual system would take the logical continuation
into account and use this property for feature matching. Consequently, we detect
“dead end” feature points that are close to other feature lines and extend their
course in tangential direction, hitting the other line with a newly created intersec-
tion feature (see Figure 4.2, right).

10

4.2 Intrinsic Features

For purely intrinsic symmetry detection, we replace extrinsic pairs of principle
curvatures by the intrinsic Gaussian curvature. We use the same MLS scheme for
the computation, just multiplying the two principal values. We need to modify this
scheme slightly to make it reliable in practice: Quadratic estimations with radially
symmetric Gaussian weights can lead to a bias when being applied to a patch of
finite size. Straight crease lines of complex cross section, but obviously with zero
Gaussian curvature everywhere, may appear to have a phantom curvature in the
direction of the crease line. This is because a spherical cut-out area might be best
approximated in a least-squares sense by a quadratic polynomial that bends into
two directions and sampling limitations prevent us from converging to an unbiased
solution. We avoid this problem by using, in a second step, an unweighted square
window with axes aligned to the previously computed directions of curvature.

The maxima of Gaussian curvature do not form line structures but point features.
Therefore, we form our graph differently: First, we extract point features thresh-
olding the Gaussian curvature and connecting the resulting peaks to their k near-
est neighbors with geodesic paths on the surface (we use £ = 8). We annotate
each point feature with the sign of the Gaussian curvature (hyperbolic, spherical).
Geodesics are again estimated using Dijkstra’s algorithm on the topology graph.
The output (graph of lines with crossings) is the same as of the first technique and
use in the same way in the subsequent pipeline. However, this intrinsic graph pro-
vides less information than the extrinsic feature lines. In particular, the intrinsic
curvature vanishes everywhere on the geodesic lines. However, we will only use
it in the case of strict isometric matching, where we do have the stronger invariant
of approximate distance preservation (which is not available in the general case of
large non-isometric deformations). Therefore, this design trade-off is acceptable.

11

S5 Graph Matching

The main component of our algorithm is a graph matching algorithm that de-
tects similar feature constellations. The matching routine consists of two nested
loops: The inner loop is a randomized greedy algorithm that generates random
candidate solutions. Depending on the random choices made, different solutions
(i.e., instance sets) of different quality will be output. The outer loop then iterates
this routine several times in order to sample the solution space and only outputs
the best instance set found. We can then apply this algorithm repeatedly, remov-
ing graph elements from already identified instance sets, to output all symmetries
within an object.

5.1 Inner Loop

We assume we are given a graph G = (V, £) of feature points and lines, corre-
sponding to vertices and edges. Each such discrete element might be annotated
by continuous geometric properties. Our task is to find a subset U C G of the
feature graph and a set of discrete mapping functions fg«) that map vertices and

edges of this subset to corresponding subgraphs Z/{g) that have approximately the
same structure. This means, that the graph topology itself should be similar and
the annotations should be approximately preserved. By varying how strictly these
geometric quantities are preserved, we can go from isometric to more general
symmetry detection.

Start edge: Each greedy matching step starts by choosing a random edge from &,
which we will call start edge €4+ in the following. The corresponding instance,
which up to now contains only this single edge, will be called start instance Lg 4.
We now look for more instances that are similar to the start instances by compar-
ing the start edge to all other edges ¢’ in the graph. We denote this comparison
function as probability P(e,¢’) (we will give more details on the implementation

12

of this comparison function later, in paragraph “edge matching”). It is important
to take into account that instances might be symmetric to themselves, resulting in
overlapping but non-identical matches. Therefore, we distinguish directed edges
(4,7) and (4, 7). This corresponds to a rotation by 180°. In order to also account for
mirroring, we tag each instance with a “mirrored” bit, that indicates that the whole
instance has changed its orientation (i.e., the cross product of a tangent frame flips
its orientation with respect to the extrinsic surface normal). In the worst case, each
start edge can appear three more times as starting matches, varying by rotation and
mirroring.

Instance growing: So far, we have only a small graph of two vertices and one
edge that corresponds to a a number of other such small graphs. Our task is thus
to extend this with additional matches. This is done by first choosing a random
vertex on the start instance. We then examine all outgoing edges €.qndidate that are
not yet contained in the instance and evaluate how well they can be matched to the
other instances. We then take the best such match, and reevaluate the other edges
until no more matching edge is found. In order to evaluate an edge e.qndidate, WE
go through all other instances and compute the best matching edge, i.e. an edge
€maten, that maximizes the matching probability P(€candidates €maten)- Very low
scores (below 0.2) are ignored. For each edge e.qn4idqte, W€ compute the expected
benefit, which is the sum of correctness probabilities P(€candidates Ematen)- Finally,
we select the edge e.qndidate With the highest benefit and all its associated matches.

Selecting the solution: The iteration outlined above stops automatically once
no more edges with sufficient matching score are found. After the iteration, we
have a situation in which we know a number of correspondences between the start
instance Ug and several other subgraphs Z/{g). Each correspondence is typically
partial, covering a subset of U/ each. For now, this is no problem; the continu-
ous shape matching step will later automatically determine a consistent common
subset of geometry for each instance set. However, we need to remove spurious
matches such as cases, in which only the start edge matched and nothing else. We
do this by deleting all Z/{g) that are not supported by at least a minimum number
kmin of vertex correspondences. The rational behind this strategy is that we need
to gather some “evidence” that the match is reasonable. A very small number
of correspondences might be correct plainly incidentally, while a larger number
makes the match more believable. k,,;, is a user parameter that trades-off false
positives versus missing some matches. If we have sufficiently strong geometric
evidence, it is often sufficient to use rather small values such as k£ > 4.

Topological robustness: A feature graph for real-world data sets is usually far
from perfect. Therefore, we have to deal with topological noise in the graph,
which will lead to false positive intersections. This effect can occur for example if

13

start O-... match
match IB -------
....... atch start e
Graph Distance Intrinsic Distances Angles Geod. Curvature

Figure 5.1: We employ four geometric validation criteria plus a check of the
graph structure (subgraph isomorphy). By setting the matching sensitivity for
each of these criteria separately, we can generalize the algorithm to non-isometric
matching. Typically, we obtain good results in practice by disregarding distances
completely and using coarse penalties for angles and curvature.

noise is converted into small line segments that form crossings that are not present
in symmetric instances. Hence, we do not check only one outgoing edge but allow
the algorithm to skip over intersection points. In case the correct matching edge
is interrupted by a spurious intersections, the algorithm will try to go up to three
points further, along outgoing lines with best matching tangential direction. This
feature skipping is performed on both the start instance and matching instance side
(conceptually, this is equivalent to just checking additional edges on both sides).

Edge matching: Finally, we need to design our edge matching function P(e, ¢’).
We formulate it as a probability value between zero and one. The actual value will
not only depend on the pair of edges themselves, but also on the two subgraphs
that contain these edges and have already been matched previously. The matching
probability is a product of five separate validation scores:

e Graph structure: If the two matching feature points do not have the same
outdegree, they are unlikely to be a good match (not impossible, because
there might be topological noise). We also check if a newly matched vertex
is connected to a vertex that is already in the instance. In that case, the
connecting edge must be present in both instances and connect to the same
vertices (thus enforcing subgraph isomorphy). If any of this fails, we reduce
the probability by a factor of 0.25.

o Edge length: The newly inserted edge should be of the same length. We
assume Gaussian noise with a user specified standard deviation oy q, and
output the corresponding probability density, normalized to the range [0..1].

¢ Geodesic distances: For this criterion, we compute the geodesic distances
on the original surface S of the newly inserted feature point to all other
feature in the start instance and the matched instance (again, using Dijk-

14

stra’s algorithm). We again assume Gaussian noise with standard deviation
Ogeod>» and multiply the resulting probabilities for the deviation and output a
normalized value.

¢ Intrinsic angles: We use an additional criterion where we check the angles
of the tangents of the outgoing edges in the tangent plane with respect to the
incoming edge. Again, strictness is controlled by a standard deviation pa-
rameter 0,,4.. For the angle matching, we need to check the orientation bit
of the instance and reverse the orientation of the angles in cases of reflected
instances. The angle criterion is particularly useful in generalized matching
scenarios. Angles are often preserved even if distances are not (in object
classes such as windows, for example).

e Geodesic curvature: Finally, we also check the average geodesic curva-
ture, parameterized by a standard deviation parameter o.,,.,. Again, a qual-
itative match is useful for generalized symmetry detection (such as to dis-
tinguish between left-bending and right-bending curves). Again, we need
to check the mirroring bit to reverse the bending direction in mirrored in-
stances.

5.2 Outer Loop

The success of the inner loop depends on a number of random decisions. We there-
fore execute the procedure repeatedly to obtain several alternative instance sets,
sampling the solution space!. From these, we chose only the best solution. In
order to quantify what the best solution is, we look at the complexity of the result;
more complex matches are less likely to be spurious: Given n instances with n;
graph elements each, we assign to this solution a score of: [[_, 1 — exp(—An;)
where A is a user parameter in the range of 0.5...0.1 (typically: 0.2). The ra-
tio behind this heuristic is to compute the expected gain of the solution, where
each instance is worth one unit and the probability of being a false positive drops
exponentially with the number of graph elements used to validate the match (ba-
sically naively assuming independent and identically distributed probabilities for
each validation step). This criterion is modeling the problem more closely than
the ad-hoc quadratic instance weighting in [Bokeloh et al., 2009].

'Our current formulation of the inner loop makes a number of deterministic decisions, which
could also be randomized by making this choices at random with a probability reflecting the ex-
pected success. Such a strategy would then actually sample the complete solution space with high
probability after a sufficiently long execution time. However, the simpler deterministic formula-
tion works better in practice.

15

6 Deformable Shape Matching

Discrete shape matching gives us only sparse correspondences between symmet-
ric instances. In a subsequent step, we propagate this information to the full ge-
ometry. As we have already solved the global combinatorial assignment problem,
we can now use a locally convergent numerical shape matching technique. For
strictly isometric symmetries, an isometric embedding such as the GMDS tech-
nique of [Bronstein et al., 2006] would be a good choice (and straightforward to
integrate into our framework). As we are also aiming at detecting more general
symmetries, we opt for 3D thin-plate splines as introduced by [Allen et al., 2003]
for matching shapes with irregular variations. This regularizer does not preserve
isometries exactly but, in practice, yields visually good solutions with the ability
to handle general shape distortions. In addition, it gives a canonical extrapolation
of the deformation field into the space surrounding the deformed object, which is
useful for many applications.

We compute a deformation function f : {2 — R? that maps from a volumetric re-
gion () enclosing the undeformed shape into three space. The thin plate spline en-
ergy tries to keep local deformation gradients similar, i.e. minimizes the Hessian
matrix of the deformation function [Allen ef al., 2003; Brown & Rusinkiewicz,
2007]. In addition, we add a constraint energy for shape matching, which leads to
the following objective function:

Mpos

E(f) = /Q eeoHe 2+ 3 (FGx) — v ™Mi(E(xs) — v2)

i=1

H¢ denotes the Hessian matrix of f, \,., is a user parameter that controls the
flexibility of the mapping, x; and x| are positions in {2 at which the positions y;
and Jacobian matrices Y, are prescribed, respectively. M; are error quadrics that
describe the weighting of the position constraints in all spatial directions.

16

Figure 6.1: More details on the matching from Figure 1.1. Left: Discrete vertex
correspondences from the graph matching step. Middle: Continuous deformation
using thin-plate splines. Right: A view from the top, to show the non-rigidity of
the deformation.

We solve the variational problem by discretizing f on regular grid of basis func-
tions (as we will have a large number of constraints, this is more efficient than
using globally supported radial basis functions of fundamental solutions). We use
a sparse grid that has only entries near actual surface points: The grid is chosen
such that the domain is overlapped by all possible basis functions with non-zero
support and at least one more additional layer of grid cells to allow for extensions
into the nearby volume. The derivatives are approximated as symmetric finite dif-
ferences of adjacent grid cells. As basis functions, we use simple but efficient
piecewise linear functions during the iterations of the deformable alignment and a
more costly smooth interpolation with radial Wendland functions in the final iter-
ation where all correspondences have already been established. The discretization

17

leads to a linear system of equations that we solve using a standard conjugate
gradients algorithm.

Using this machinery, we can implement a deformable ICP algorithm: We start by
constructing the undeformed parametrization domain (urshape) by cutting out the
bounding cube of the matched features out of the start instance point set. Next,
we setup position constraints that map intersection points to the positions on the
matching shape (with identity quadrics M;). We also map lines to lines using a
proportional mapping with respect to arc length as initial guess. With this initial
guess, a first alignment is computed. Afterwards, we compute for each deformed
point the closest point on the target surface and setup a point-to-plane constraint
that attracts the deformed point to the closest target in normal direction. This is
implemented by setting the error quadric to a rank one tensor given by the outer
product of the normal to the target surface with itself. For each constraint, we also
add a copy displaced by the surface normal scaled by the grid size. This helps
in keeping the volumetric deformation problem well constrained. We solve the
resulting linear system and iterate the deformable ICP until convergence.

We use this to align all instances to the starting instance, which becomes our
urshape. After completion, we use a simple region growing algorithm to cut out
the symmetric geometry: We start at a random point close to the start edge and
in a breadth-first marching algorithm simultaneously extend the covered region.
This leads to a growing front of constant geodesic distance that eventually either
collides with other fronts or reaches a region with large point-to-plane residuals
where the growing stops because of mismatching geometry. To make this outlier
robust, we do not stop if less than 20% of the instances are affected by such a
collision or a geometry mismatch. If growing reaches the boundary of the initially
cut out domain before being stopped, the domain is extended and the iteration
continued.

18

7 Implementation and Results

We have implemented our symmetry detection algorithm in C++ to evaluate the
performance in practice. The results were obtained on PCs equipped with 2.4GHz
Intel Core 2 Duo processors.

Deformed windows: Our first test data set is a synthetic geometry of four gothic
windows, one of which is folded onto a cylinder, yielding a mapping very close
to isometry (Figure 7.4). The discrete graph matching identifies the symmetric
windows correctly, including the reflective symmetry. For this rather simple case,
we obtain almost perfect correspondences. In a second step, we make this problem
more challenging by applying a global non-isometric deformation to the scene
(see Figure 7.5). In this case, the generalized symmetry detection algorithm is still
able to find the four instances of the window, including reflective symmetries that
lead to 8 overall instances. There are small artifacts in the corners of the instances;
in this region, the deformable ICP was unable to extrapolate the correspondences
precisely.

Plasticine snails: In order to have a real-world data set with approximately iso-
metric symmetries, we have modeled and scanned a physical 3D model ourselves.
The model consists of a sheet of plasticine in which three figures of snails have
been impressed using a plastic cast. Subsequently, the plasticine sheet was bent
to an S-shaped cross section. The data set has been acquired with a Minolta laser
triangulation scanner, aligned using deformable ICP and postprocessed manually,
which includes outlier removal, hole filling and MLS filtering for noise suppres-
sion. The result is shown in Figures 1.1 and 6.1. The resulting data set still has
several imperfections: for example, the antennae of the head of the snails are flat-
tened out in two instances as well as the back of the leftmost snail (due to falling on
the floor before scanning). In addition, the surface shows scratches from sculpting
that create outlier lines. These issues have intentionally not been fixed to obtain
a realistic test case. After adjusting some parameters (see discussion below), we
obtain a good matching results.

19

Figure 7.1: Comparison of different symmetry detection algorithms. The
top row shows an example of a relief that with rigid symmetris (left), near-
isometrically deformed symmetries (middle) and non-isometrically deformed sym-
metries (right). The second row shows the resulting symmetric instances detected
using the technique by [Bokeloh et al. 2009]. The third row shows our results, for
the purely isometric pipeline (Gaussian curvature features, strict preservation of
intrinsic distances). The last row shows the results for the generalized symmetry
detection scheme (relaxed geometric matching, extrinsic crease features). As ex-
pected, the rigid technique fails on deformed examples. Our technique can also
handle the case of more general deformations when parameterized accordingly.

Comparison of matching strategies: In Figure 7.1, we compare different match-
ing strategies; the top row shows a relief with three instances each that are rigidly
displaced on the left, approximately isometrically deformed in the middle and
strongly distorted (using manually placed constraints on a thin-plate spline en-
ergy) on the right. We then first run the most closely related technique of [Bokeloh
et al., 2009], which is state-of-the-art for feature based symmetry detection. As
expected, the technique is not able, even with optimized parameters, to identify the
deformed instances. However, the rigid instances are detected reliably. Next, we
employ our isometric matching pipeline using intrinsic features based on Gaus-
sian curvature (all other examples use the extrinsic features) and strict threshold
on all intrinsic geometric quantities. As a result, the isometrically deformed parts
are recognized reliably, but the technique fails for the more general cases. These
are recognized by running our approach in “generalized settings” (using extrinsic
crease curve detection). Please note that the recognition quality for the simpler
cases does not suffer visibly from the generalization here.

Scanned turtle: Our next example data set is the scanned turtle figurine from
[Rusinkiewicz et al., 2002]. The main symmetry pattern is in the scutes (bumps)
on the turtles back. This is a general, non-isometric symmetry. Our algorithm

20

Figure 7.2: General symmetries detected on the back of the turtle figurine. The
differently colored pieces are all instances of a single symmetry; they show the
result of applying the deformations f® to the urshape. Due to the rotational and
reflective symmetry, we obtain (up to) 12 pieces per scutes. A small area in the
middle of each scute remains empty because we do not explicitly constrain the
instances to form periodic patterns. Data from [Rusinkiewicz et al. 2002].

retrieves about 170 instances that cover a large portion of the symmetries present
(see Figure 7.2). Each scute is 6-way rotationally symemtric to itself and each
such piece has again a reflective symmetry. Our algorithm recognizes this fact
and outputs up to 12 pieces as result. We currently do not attempt to detect regular
patterns; therefore, the symmetries are not closing perfectly but a small area in the
middle remains without correspondences.

More general symmetry examples: We have tested our algorithm on two more
example data sets that contain generalized symmetries. The first is a piece of a
castle data set, also used (for comparison) in [Bokeloh et al., 2009], see Figure 7.3.
The rigid matching technique recognizes just a global reflective symmetry for this
data set, because the three gates are of different cross section. The generalized
technique actually recognizes that these three instances are structurally similar,
including the reflective symmetry within each gate. A second example is a piece of
the back of the Stanford dragon, which features structurally similar scales that are
easily recognized by a human observer. However, the actual geometry is varying
drastically so that this similarity is very hard to detect for an algorithmic feature
detector. Consequently, our technique is not able to detect all scales but at least
detects the majority of them and cuts out reasonable instances automatically by the
deformable alignment (see Figure 7.6). We have also tried to run the algorithm on

21

the full dragon data set; however, this failed due to the high memory requirments,
exceeding the 2GB limitation of our 32bit implementation. Therefore, we provide
the results for the left half of the complete data set as reference, which we would
expect to generalize for the full data set (see Figure 7.7. In this case, we again are
able to match only about half of symmetries in the scales (which are automatically
recognized as the most salient symmetric structure); however, given the difficulty
of the matching problem, this is a reasonable result.

Figure 7.3: A simple example for using general symmetries on a scanned archi-
tectural data set: One of the three gates is of different proportions; our technique
recognizes the symmetry, including reflective in each piece symmetry. The rigid
technique of [Bokeloh et al. 2009] only recognizes a single global reflective sym-
metry. The right image shows the detected feature graph (edge lengths are color
coded).

Running time: The most expensive parts of our computation pipeline are the fea-
ture detection step (in particular, the MLS computations, which performs many
nearest neighbor queries) and deformable alignment. Both require computation
times in the range of a quarter of an hour. In comparison, graph matching is inex-
pensive, with running times of less than a minute for all our data sets. Most of this
time is spend on building the the feature graph and computing geodesic distances.
The core graph matching routine always completes within a few seconds.

22

Figure 7.4: A synthetic example for partial isometric symmetries; left: original
geometry; middle: detected instances after region growing; right: painting on
one instance and transferring to all others.

Figure 7.5: Another synthetic example for partial isometric symmetries. Left:
Original deformed geometry. Right: Detected instances after region growing, the

image shows the result of deforming the urshape (half a window) by the computed
continuous deformation function.

23

L<CogINLDG
T Y LY XVTY AN

Figure 7.6: Results for a small piece of the Stanford Asia Dragon data set. Our
algorithm correctly identifies more than half of the repeating scales. Due to the
strong geometric and even topological variation, this is a very hard problem. The
images on the right show the deformed urshapes, which are very close in shape to
the original geometry and match salient feature lines correctly.

Figure 7.7: Matching results for a larger piece of the Stanford Asia Dragon data
set. Our technique is still able to recognize a substantial subset of the scales on
the back, which are automatically identified as most salient symmetric structure.

24

7.1 Discussion and Limitations

Our algorithm is able to identify isometric symmetries and establish dense cor-
respondences. For more general symmetries, it is still able to retrieve matches a
human observer would expect. However, we do not obtain perfect results, due to
the difficulty of the general matching problem.

As most feature-based algorithms, the technique is parameter dependent. The
most important parameter is the scale parameter €,.,.. Feature detection is rather
parameter insensitive; however, handling difficult inputs such as the the damaged
parts of the snails require some fine tuning of threshold, smoothing radius and
curve shrinking parameters.

By design, the important parameters of the graph matching algorithm are the four
standard deviations Ojength; Ogeod;, Cangles Ocurv- These parameters can be used to
adapt the matching algorithm to the specific situation. For general matching, filter-
ing by angles and geodesic curvature (with increased standard deviation, though)
might still yield good results while preservation of lengths is only an option for
near-isometric cases. The only additional parameter we currently need to set is the
minimum instance size to filter out small outlier instances; this value is not deter-
mined automatically with the current strategy. For region growing and deformable
matching, we use a fixed parameter set for all cases.

Besides parameter dependence, our algorithm is mostly limited by the type of
features we build our discrete structure on. The choice of high curvature lines
works well in many different data sets, but currently fails if a surface contains only
closed curves without intersections. However, refining the feature detector with
additional cues (such as curve corners, slippable regions, geometric primitives
etc.) is straightforward.

25

8 Conclusion and Future Work

We have presented a new algorithm to detect general symmetries in 3D shapes.
Our algorithm can handle partial isometric symmetries, which has not been demon-
strated before, as well as more general symmetries where the preservation of in-
trinsic geometric quantities can be relaxed. We consider this a first step towards
solving a very difficult problem that has not been addressed before. Using our ap-
proach, we are able to detect complex symmetry patterns in shapes that previously
could not be detected automatically.

In future work, we would like to address some of the limitations of our current
system. In particular, the feature detection technique could be improved in terms
of parameter dependence and generality. It would also be interesting to extend the
notion of generalized symmetries further to objects that cannot be mapped one-
to-one, but show similar structure, such as pieces consisting of a varying number
of similar subpieces. Finally, it would be very interesting to examine the usage
of general symmetry information to devise user friendly shape editing tools that
partially automate common editing tasks.

26

References

Alexa, M., Beht, J., Cohen-Or, D., Fleishman, S., Levin, D., & Silva, C.T. 2003.
Computing and rendering point set surfaces. IEEE Trans. Visualization and
Comp. Graphics, 9(1), 315.

Allen, Brett, Curless, Brian, & Popovi¢, Zoran. 2003. The space of human body
shapes: reconstruction and parameterization from range scans. Pages 587-
594 of: SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers. New York, NY,
USA: ACM.

Amenta, N., & Kil, Y. J. 2004. Defining point-set surfaces. ACM Trans. Graph.,
23(3), 264-270.

Anguelov, Dragomir, Srinivasan, Praveen, Pang, Hoi-Cheung, Koller, Daphne,
Thrun, Sebastian, & Davis, James. 2004. The Correlated Correspondence
Algorithm for Unsupervised Registration of Nonrigid Surfaces. In: Proc.
NIPS.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., & Wu, A. Y. 1998. An
Optimal Algorithm for Approximate Nearest Neighbor Searching. Journal
of the ACM, 45, 891-923.

Bendels, G. H., Degener, P., Wahl, R., Kortgen, M., & Klein, R. 2004. Image-
Based Registration of 3D-Range Data Using Feature Surface Elements.
Pages 115—124 of: Proc. VAST.

Berner, Alexander, Bokeloh, Martin, Wand, Michael, Schilling, Andreas, & Sei-
del, Hans-Peter. 2008. A Graph-Based Approach to Symmetry Detection.
In: Proc. Symp. Point-Based Graphics 2008.

Besl, P. J., & Mckay, N.D. 1992. A Method for Registration of 3-D Shapes. I[EEE
Trans. Pattern Anal. Mach. Intell., 14(2).

Biber, P., & Straer, W. 2003a. The Normal Distributions Transform: A New

27

Approach to Laser Scan Matching. In: IEEE/RJS International Conference
on Intelligent Robots and Systems.

Biber, P., & Straer, W. 2003b. Solving the Correspondence Problem by Finding
Unique Features. In: 16th International Conference on Vision Interface.

Bokeloh, Martin, Berner, Alexander, Wand, Michael, Seidel, Hans-Peter, &
Schilling, Andreas. 2009. Symmetry Detection Using Line Features. Com-
puter Graphics Forum (Eurographics 2009).

Bronstein, Alexander M., Bronstein, Michael M., & Kimmel, Ron. 2006. Gener-
alized multidimensional scaling: A framework for isometry-invariant partial
surface matching. Proceedings of the National Academy of Science (PNAS),
103(5), 1168-1172.

Brown, Benedict, & Rusinkiewicz, Szymon. 2007. Global Non-Rigid Alignment
of 3-D Scans. ACM Transactions on Graphics (Proc. SIGGRAPH), 26(3).

Castro, E. De, & Morandi, C. 1987. Registration of translated and rotated images
using finite Fourier transforms. IEEE Trans. Pattern Anal. Mach. Intell., 9(5),
700-703.

Chen, Y., & Medioni, G. 1992. Object modelling by registration of multiple range
images. Image Vision Comput., 10(3), 145-155.

Comaniciu, Dorin, & Meer, Peter. 2002. Mean Shift: A Robust Approach Toward
Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5), 603—
619.

Curless, B., & Levoy, M. 1996. A Volumetric Method for Building Complex
Models from Range Images. Computer Graphics, 30, 303-312.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Pages
269-271 of: Numerische Mathematik, vol. 1. Mathematisch Centrum, Ams-
terdam, The Netherlands.

Duda, R. O., Hart, P. E., & Stork, D. G. 2000. Pattern Classification (2nd Edition).
Wiley-Interscience.

Felzenszwalb, P., & Huttenlocher, D.P. 2005. Pictorial Structures for Object
Recognition. Intl. J. Computer Vision, 61(1), 55-79.

Fischler, Martin A., & Bolles, Robert C. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Comm. ACM, 24(6).

28

Frigo, M., & Johnson, S. G. 1998 (May). FFTW: An adaptive software architec-
ture for the FFT. Pages 1381-1384 of: Proc. IEEE Intl. Conf. on Acoustics,
Speech, and Signal Processing, vol. 3.

Frome, Andrea, Huber, Daniel, Kolluri, Ravi, Bulow, Thomas, & Malik, Jitendra.
2004. Recognizing Objects in Range Data Using Regional Point Descriptors.
In: Proc. Europ. Conf. Comp. Vision (ECCV).

Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., &
Jacobs, D. 2003. A search engine for 3D models. ACM Trans. Graph., 22(1),
83-105.

Gal, R., & Cohen-Or, D. 2006. Salient geometric features for partial shape match-
ing and similarity. ACM Trans. Graph., 25(1), 130-150.

Gal, Ran, Shamir, Ariel, Hassner, Tal, Pauly, Mark, & Cohen-Or, Daniel. 2007.
Surface Reconstruction using Local Shape Priors. In: Proc. Symp. Geometry
Processing.

Gatzke, T., Grimm, C., Garland, M., & Zelinka, S. 2005. Curvature Maps for
Local Shape Comparison. Page 244256 of: Proc. Shape Modeling Interna-
tional.

Gelfand, N., Mitra, N. J., Guibas, L. J., & Pottmann, H. 2005. Robust Global
Registration. Pages 197-206 of: Proc. Symp. Geometry Processing.

Gelfand, Natasha, & Guibas, Leonidas J. 2004. Shape segmentation using local
slippage analysis. Pages 214-223 of: Proc. Symp. Geometry processing.

Gelfand, Natasha, Ikemoto, Leslie, Rusinkiewicz, Szymon, & Levoy, Marc. 2003.
Geometrically Stable Sampling for the ICP Algorithm. In: Proc. Int. Conf.
3D Digital Imaging and Modeling.

Gumbhold, S., Wang, X., & MacLeod, R. 2001. Feature Extraction from Point
Clouds. In: Proc. Meshing Roundtable.

Harris, C., & Stephens, M. 1988. A Combined Corner and Edge Detection. Pages
147-151 of: Proc. 4th Alvey Vision Conference.

Hilaga, Masaki, Shinagawa, Yoshihisa, Kohmura, Taku, & Kunii, Tosiyasu L.
2001. Topology matching for fully automatic similarity estimation of 3D
shapes. Pages 203-212 of: SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques. New York,
NY, USA: ACM.

Hildebrandt, Klaus, Polthier, Konrad, & Wardetzky, Max. 2005. Smooth Feature
Lines on Surface Meshes. In: Proc. Symp. Geometry Processing.

29

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. 1992. Surface
reconstruction from unorganized points. In: Proc. Siggraph 1992.

Huang, Qi-Xing, Flory, Simon, Gelfand, Natasha, Hofer, Michael, & Pottmann,
Helmut. 2006. Reassembling Fractured Objects by Geometric Matching.
ACM Trans. Graphics, 25(3), 569-578.

Jenke, P., Wand, M., Bokeloh, M., Schilling, A., & Straller, W. 2006. Bayesian
Point Cloud Reconstruction. In: Proc. EUROGRAPHICS ’06.

Kadir, T., & Brady, M. 2001. Saliency, Scale and Image Description. Int. J.
Computer Vision, V45(2), 83-105.

Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., & Rusinkiewicz, S.
2003a. A Reflective Symmetry Descriptor for 3D Models. Algorithmica,
38(1), 201-225.

Kazhdan, M., Funkhouser, T., & Rusinkiewicz, S. 2003b (June). Rotation Invari-
ant Spherical Harmonic Representation of 3D Shape Descriptors. In: Proc.
Symp. Geometry Processing.

Kent, J. T., Mardia, K. V., West, J. M., & Jt, Leeds Ls. 1996. Ridge curves and
shape analysis. Pages 43-52 of: In The British Machine Vision Conference.

Laboratory, Stanford Graphics. Stanford Scanning Repository.
http://graphics.stanford.edu/data/3Dscanrep/.

Lamdan, Y., & Wolfson, H. J. 1988. Geometric hashing: A general and efficient
model-based recognition scheme. In: Proc. Int. Conf. Computer Vision.

Lasowski, Ruxandra, Tevs, Art, Seidel, Hans-Peter, & Wand, Michael. 2009
(September). A Probabilistic Framework for Partial Intrinsic Symmetries
in Geometric Data. In: IEEE International Conference on Computer Vision
(ICCV).

Li, X., & Guskov, 1. 2005. Multiscale Features for Approximate Alignment of
Point-based Surfaces. Pages 217-226 of: Symp. Geometry Processing.

Li, Xinju, Guskov, Igor, & Barhak, Jacob. 2006. Robust Alignment of Multi-view
Range Data to CAD Model. In: Proc. Shape Modeling and Applications.

Lowe, D. 2003. Distinctive image features from scale-invariant keypoints. Pages
91-110 of: Int. J. Computer Vision, vol. 20.

Loy, G., & Eklundh, J.O. 2006. Detecting Symmetry and Symmetric Constella-
tions of Features. Pages 508-521 of: Proc. Europ. Conf. Computer Vision.

30

Martinet, Aurélien, Soler, Cyril, Holzschuch, Nicolas, & Sillion, Frangois. 2006.
Accurate Detection of Symmetries in 3D Shapes. ACM Trans. on Graphics,
25(2), 439 — 464.

Martinet, Aurlien. 2007. Structuring 3D Geometry based on Symmetry and In-
stancing Information. Ph.D. thesis, INP Grenoble.

Mitra, N. J., Gelfand, N., Pottmann, H., & Guibas, L. 2004. Registration of Point
Cloud Data from a Geometric Optimization Perspective. In: Symp. Geometry
Processing.

Mitra, N. J., Guibas, L., & Pauly, M. 2007. Symmetrization. In: ACM Transac-
tions on Graphics, vol. 26.

Mitra, Niloy J., Guibas, Leonidas J., & Pauly, Mark. 2006. Partial and approxi-
mate symmetry detection for 3D geometry. ACM Trans. Graph., 25(3), 560-
568.

Nilsson, P. E. Hart N. J., & Raphael, B. 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Systems, Science, and
Cybernetics, SSC-4(2), 100-107.

Novotni, M., & Klein, R. 2004. Shape retrieval using 3D Zernike descriptors.
Computer Aided Design, 36(11), 1047-1062.

Novotni, Marcin, & Klein, Reinhard. 2003. 3D zernike descriptors for content
based shape retrieval. Pages 216-225 of: Proc. Solid Modeling and Applica-
tions.

Ohtake, Yutaka, Belyaev, Alexander, & Seidel, Hans-Peter. 2004. Ridge-valley
lines on meshes via implicit surface fitting. Pages 609-612 of: Proc. Sig-
graph.

Ovsjanikov, Maks, Sun, Jian, & Guibas, Leonidas. 2008. Global Intrinsic Sym-
metries of Shapes. In: Eurographics Symposium on Geometry Processing
(SGP).

Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., & Guibas, L. 2008. Discover-
ing Structural Regularity in 3D Geometry. ACM Transactions on Graphics,
27(3).

Pauly, Mark, Keiser, Richard, & Gross, Markus. 2003. Multi-Scale Feature Ex-
traction on Point-Sampled Models. In: Proc. Eurographics.

Pauly, Mark, Mitra, Niloy, Giesen, Joachim, Gross, Markus, & Guibas,
Leonidas J. 2005. Example-Based 3D Scan Completion. In: Proc. Symp.
Geometry Processing.

31

Podolak, Joshua, Shilane, Philip, Golovinskiy, Aleksey, Rusinkiewicz, Szymon,
& Funkhouser, Thomas. 2006. A Planar-Reflective Symmetry Transform for
3D Shapes. ACM Transactions on Graphics (Proc. SIGGRAPH), 25(3).

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992. Numer-
ical Recipes in C: The Art of Scientific Computing. Cambridge University
Press.

Raviv, Daniel, Bronstein, Alexander M., Bronstein, Michael M., & Kimmel, Ron.
2007. Symmetries of non-rigid shapes. In: Proc. Workshop on Non-rigid
Registration and Tracking through Learning.

Rusinkiewicz, S., & Levoy, M. 2001. Efficient Variants of the ICP Algorithm.
Pages 145—152 of: Proc. 3rd Intl. Conf. 3D Digital Imaging and Modeling.

Rusinkiewicz, Szymon, Hall-Holt, Olaf, & Levoy, Marc. 2002. Real-time 3D
model acquisition. ACM Trans. Graph., 21(3), 438—446.

Schnabel, R., Wessel, R., Wahl, R., & Klein, R. 2008. Shape Recognition in 3D
Point-Clouds. In: Proc. Conf. in Central Europe on Computer Graphics,
Visualization and Computer Vision.

Schnabel, R., Degener, P., & Klein, R. 2009 (March). Completion and Recon-
struction with Primitive Shapes. Computer Graphics Forum (Eurographics
2009).

Simari, Patricio, Kalogerakis, Evangelos, & Singh, Karan. 2006. Folding meshes:
hierarchical mesh segmentation based on planar symmetry. Pages 111119
of: Proc. Symp. Geometry Processing.

Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rossl, C., & Seidel, H.-P. 2004.
Laplacian surface editing. Pages 175—-184 of: SGP ’04: Proceedings of the

2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing.
New York, NY, USA: ACM.

Teves, Art, Bokeloh, Martin, Wand, Michael, Schilling, Andreas, & Seidel, Hans-
Peter. 2009. Isometric Registration of Ambiguous and Partial Data. In: Proc.
Conf. Computer Vision and Pattern Recognition (CVPR).

Thrun, Sebastian, & Wegbreit, Ben. 2005. Shape from Symmetry. In: Proc. Int.
Conf. Computer Vision.

Turk, G., & Levoy, M. 1994. Zippered polygon meshes from range images. Pages
311-318 of: SIGGRAPH ’94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques.

32

Wand, Michael, & Strafler, Wolfgang. 2002. Multi-Resolution Rendering of Com-
plex Animated Scenes. Computer Graphics Forum (Eurographics 2002),
21(3). Eurographics 2002.

Wand, Michael, Jenke, Philipp, Huang, Qi-Xing, Bokeloh, Martin, Guibas,
Leonidas, & Schilling, Andreas. 2007. Reconstruction of Deforming Geom-
etry from Time-Varying Point Clouds. In: Proc. Symp. Geometry Processing.

Yamany, Sameh M., & Farag, Aly A. 2002. Surfacing Signatures: An Orientation
Independent Free-Form Surface Representation Scheme for the Purpose of
Objects Registration and Matching. IEEE Trans. Pattern Anal. Mach. Intell.,

24(8), 1105-1120.

Zelinka, S., & Garland, M. 2004. Similarity-based surface modelling using
geodesic fans. Pages 204-213 of: Proc. Symp. Geometry processing.

Zhang, Hao, Sheffer, Alla, Cohen-Or, Daniel, Zhou, Qingnan, van Kaick, Oliver,
& Tagliasacchi, Andrea. 2008. Deformation-Drive Shape Correspondence.
Computer Graphics Forum (SGP 2008), 27(5), 1431-1439.

33

