Shape Analysis with Subspace Symmetries

Alexander Berner1 Michael Wand1,2 Niloy Mitra3,4
Daniel Mewes1 Hans-Peter Seidel1

1MPI Informatik 2Saarland University 3KAUST 4IIT Delhi
Overview

Introduction

Related Work

Subspace Symmetries

Detection Algorithm

Results

Conclusions
Overview

Introduction
Related Work
Subspace Symmetries
Detection Algorithm
Results
Conclusions
Partial Symmetries

Partial Symmetry Detection

- Find similar parts
- Decomposition into building blocks
- Fundamental tool in shape understanding
Partial Symmetries

Partial Symmetry Detection

Repetitive Parts
Partial Symmetries

Partial Symmetry Detection

- Repetitive part P (sufficiently large)
- Transformations $f_i \in G$
- Group of transformations G
Restriction

- Fixed group of transformations
 - Rigid motions, reflections, scaling, affine maps
 - Intrinsic isometries
- Need to define *a priori* what constitutes similarity
More General Symmetries
Overview

Introduction

Related Work

Subspace Symmetries

Detection Algorithm

Results

Conclusions
Symmetry Detection

Fixed Transformation groups

• Reflections
 [Podolak et al. 2006], [Loy et al. 2006]

• Euclidean Transformations
 [Bokeloh et al. 2009]

• Similarity transforms
 [Mitra et al. 2006], [Pauly et al. 2008]

• Intrinsic isometries
 [Ovsjanikov et al. 2008],
 [Lasowski et al. 2009], [Xu et al. 2009]
 [Mitra et al. 2010], [Kim et al. 2010]
Global Matching of General Shapes

Global Matching

• Topological Methods
 ▪ [Hilga et al. 2001]

• Combinatorial Search
 ▪ [Zhang et al. 2008], [Au et al. 2010]

• Learning
 ▪ [Kalogerakis et al. 2010],
 [van Kaik et al. 2011], [Sunkel et al. 2011]
Building subspace models

- Local matching, user guided
 - [Blanz et al. 1999], [Allen et al. 2003],
 - [Hasler et al. 2009]
Overview

Introduction
Related Work

Subspace Symmetries

Detection Algorithm
Results
Conclusions
Subspace Symmetries

No transformation groups

• (Almost) arbitrary mappings
• How to avoid spurious matches?

Key idea

• Matching functions must form low dimensional subspace
Subspace Symmetries

Shapes

Subspace (1D)
Objective

Find

- Part \mathcal{P}
- Functions f_1, \ldots, f_n

Such that:

$$f_i(\mathcal{P}) = \mathbf{T} \left(\mathcal{P} + \sum_{k=1}^{d} \lambda_k b_k(\mathcal{P}) \right)$$

$d \ll n$

Rigid Motion (Param) Shape Coordinates (Param)

Mean (Model) Basis function (Model)
Remarks

Uniqueness:
- Many equivalent subspace models might fit the same data
- Symmetry breaking: minimize bending

Gaussian Model:
- We can learn covariance from data
- Additional constraint
Challenge

Input

- Shape $\mathcal{S} \subseteq \mathbb{R}^3$

Unknowns

- Part $\mathcal{P} \subseteq \mathcal{S}$
- Functions $f_1, ..., f_n$

Can be computed

- Rigid transformations $T_1, ..., T_n$
- Basis functions $b_1, ..., b_n$
- Shape coordinates $\lambda_1, ..., \lambda_n$
Challenge

Unknowns

- Part $\mathcal{S} \subseteq \mathbb{R}^3$
- Functions f_1, \ldots, f_n

Problems

- Need correspondences
- High dimensional objects
- Very large search space
Overview

Introduction
Related Work
Subspace Symmetries

Detection Algorithm

Results
Conclusions
Three Steps to Reduce Complexity

1. Feature matching
 - Sparse, discrete matching

2. Graph matching
 - Matching heuristic

3. Optionally: User training
 - Learn graphs from user input
Feature Extraction

Features: surface curves & crossings

- **Strong assumption:** Graphs invariant under symmetry
- See paper technical details
Feature Matching

Brute-force feature matching

• d-dimensional subspace, n feature points
• Brute force algorithm: double exponential in d

Need more efficient strategy
Heuristic Bootstrapping

Stronger Assumption
- Corresponding parts have similar feature graphs

Similar
- Same topology (small defects possible)
- Similar geometry
 - Angles, up to some noise
 - Intrinsic distances up to factor 3x

Bootstrapping
- Find a few instances first, build PCA model
- Partial finds more
Graph Matching
Complete & Partial Matches
Use discovered subspace model
Dense Correspondences

Deformable ICP

- Fit bending minimizing dense correspondence field
- Thin-plate-splines
Result
Result

initial match

principal eigenvalue
Extension: Manual Training

Training

• Click on corresponding feature points
• Mark relevant lines (one instance)
• Then: Learn PCA model of relevant graph parts

Usage

• Noisy, cluttered feature graphs
• Focus on „interesting“ subset
• Instance retrieval is still automatic
Overview

Introduction
Related Work
Subspace Symmetries
Detection Algorithm

Results

Conclusions
Chairs (synthetic)
Chairs (synthetic)
Living Room (synthetic)
Living Room (synthetic)
Statue (3D Scan)
Dino (3D Scan, Manual Training)
Church (3D Scan)
Overview

Introduction
Related Work
Subspace Symmetries
Detection Algorithm
Results

Conclusions
Conclusions

General notion of symmetry
- Important problem
- Proposal: subspace model

Heuristic graph matching algorithm
- Can get good results on clean input
 - Meshes and range data
 - Parameter dependent
- Training improves performance on ambiguous data

Future challenge
- Provably efficient and effective solution