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Partial Symmetries 

Partial Symmetry Detection 

• Find similar parts 

• Decomposition into building blocks 

• Fundamental tool in shape understanding 
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Partial Symmetries 

Partial Symmetry Detection 

Repetetive Parts 
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Partial Symmetries 

Partial Symmetry Detection 

• Repetitive part      (sufficiently large) 

• Transformations fi  G 
• Group of transformations G 

P f1 f2 f3 f4 f5 

P 
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G 

Restriction 

Restriction 

• Fixed group of transformations 

 Rigid motions, reflections, scaling, affine maps 

 Intrinsic isometries 

• Need to define a priori what constitutes similarity 

P f1 

f2 

f3 

f4 
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More General Symmetries 
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Symmetry Detection 

Fixed Transformation groups 

• Reflections 
[Podolak et al. 2006], [Loy et al. 2006] 

• Euclidean Transformations 
[Bokeloh et al. 2009] 

• Similarity transforms 
[Mitra et al. 2006], [Pauly et al. 2008] 

• Intrinsic isometries 
[Ovsjanikov et al. 2008], 
[Lasowski et al. 2009], [Xu et al. 2009]  
[Mitra et al. 2010], [Kim et al. 2010] 
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Global Matching of General Shapes 

Global Matching 

• Topological Methods 
 [Hilga et al. 2001] 

• Combinatorial Search 
 [Zhang et al. 2008], [Au et al. 2010] 

• Learning 
 [Kalogerakis et al. 2010],  

[van Kaik et al. 2011], [Sunkel et al. 2011] 
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Global Matching of General Shapes 

Building subspace models 

• Local matching, user guided 
 [Blanz et al. 1999], [Allen et al. 2003], 

[Hasler et al. 2009] 
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Subspace Symmetries 

No transformation groups 

• (Almost) arbitrary mappings 

• How to avoid spurious matches? 

Key idea 

• Matching functions must form low dimensional subspace 

G 

P f1 

f2 

f3 

f4 
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Subspace Symmetries 

Shapes Subspace (1D) 
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Objective 

Find 

• Part 

• Functions f1, ..., fn 

Such that: 

 

P 









 



d

k
kki bf

1

)()( PPP T

Rigid Motion 
(Param) 

Basis function 
(Model) 

Mean 
(Model) 

Shape Coordinates 
(Param) 

d < < n 



 17 

Remarks 

Uniqueness: 

• Many aquivalent subspace 
models might fit the same 
data 

• Symmetry breaking: 
minimize bending 

Gaussian Model: 

• We can learn covariance 
from data 

• Additional constraint 
)(, xΣ PN

Example Shapes 

P 
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Challenge 

Input 

• Shape 

Unknowns  

• Part 

• Functions f1, ..., fn 

Can be computed 

• Rigid transformations T1, ..., Tn 

• Basis functions b1, ..., bn 

• Shape coordinates 1, ..., n 

S µ R3  

P µ S 
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Challenge 

Unknowns  

• Part 

• Functions f1, ..., fn 

Problems 

• Need correspondences 

• High dimensional objects 

• Very large search space 

S µ R3  

? 
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Three Steps to Reduce Complexity 

1. Feature matching  

• Sparse, discrete matching 

2. Graph matching 

• Matching heuristic 

3. Optionally: User training 

• Learn graphs from user input 
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Feature Extraction 

Features: surface curves & crossings 

• Strong assumption: Graphs invariant under symmetry 

• See paper technical details 
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Feature Matching 

Brute-foce feature matching 

• d-dimensional subspace, n feature points 

• Brute force algorithm: double exponential in d 

Need more efficient strategy 
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Heuristic Bootstrapping 

Stronger Assumption 
• Corresponding parts have similar feature graphs 

Similar 
• Same topology (small defects possible) 

• Similar geometry 
 Angles, up to some noise 

 Intrinsic distances up to factor 3x 

Bootstrapping 
• Find a few instances first, build PCA model 

• Partial finds more 
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Graph Matching 
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Complete & Partial Matches 
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Refinement 

Use discovered subspace model 
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Dense Correspondences 

Deformable ICP 

• Fit bending minimizing dense correspondence field 

• Thin-plate-splines 
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Result 
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Result 

principal eigenvalue 

initial match 
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Extension: Manual Training 

Training 

• Click on corresponding feature points 

• Mark relevant lines (one instance) 

• Then: Learn PCA model of relevant graph parts 

Usage 

• Noisy, cluttered feature graphs 

• Focus on „interesting“ subset 

• Instance retrieval is still automatic 
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Chairs (synthetic) 
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Chairs (synthetic) 
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Living Room (synthetic) 
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Living Room (synthetic) 
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Statue (3D Scan) 
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Dino (3D Scan, Manual Training) 
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Church (3D Scan) 
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Conclusions 

General notion of symmetry 

• Important problem 

• Proposal: subspace model 

Heuristic graph matching algorithm 

• Can get good results on clean input 

 Meshes and range data 

 Parameter dependent 

• Training improves performance on ambiguous data 

Future challange 

• Provably efficient and effective solution 


