
EUROGRAPHICS 2009 / P. Dutré and M. Stamminger
(Guest Editors)

Volume 28(2009), Number 2

Symmetry Detection Using Feature Lines

M. Bokeloh1 and A. Berner1 and M.Wand2,3 and H.-P. Seidel3 and A. Schilling1

1WSI/GRIS, University of Tuebingen, Germany
2Saarland University

3Max-Planck Institute Informatik

Abstract

In this paper, we describe a new algorithm for detecting structural redundancy in geometric data sets. Our al-
gorithm computes rigid symmetries, i.e., subsets of a surface model that reoccur several times within the model
differing only by translation, rotation or mirroring. Our algorithm is based on matching locally coherent con-
stellations of feature lines on the object surfaces. In comparison to previous work, the new algorithm is able to
detect a large number of symmetric parts without restrictions to regular patterns or nested hierarchies. In addition,
working on relevant features only leads to a strong reduction in memory and processing costs such that very large
data sets can be handled. We apply the algorithm to a number of real world 3D scanner data sets, demonstrating
high recognition rates for general patterns of symmetry.

Categories and Subject Descriptors(according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Artificial Intelligence [I.2.10]: Vision and Scene Understanding—

1. Introduction

Symmetry detection is a recent research direction in geome-
try processing: The task of a symmetry detection algorithm
is to decompose the input geometry into a set of parts, and
a set of mapping functions that reassemble an approxima-
tion of the original object from these parts up to a desired
level of accuracy. The ability to compute such decomposi-
tions automatically from general input geometry is an im-
portant tool for many computer graphics applications. For
example, a symmetry decomposition provides a natural way
of compressing geometry, it allows for improving the quality
of partially and noisily scanned objects, and also facilitates
“intelligent” editing of geometry, such as propagating edits
to multiple instances of one and the same building block.

Our paper addresses the problem of finding rigid sym-
metries. This means we are looking for parts in the model
that can be reused under orthogonal mappings (rotation and
mirroring) and translations to assemble the input model
more compactly. The most successful techniques for de-
tecting such types of symmetry are based on transfor-
mation voting, where transformations between candidate
pairs of potentially corresponding points are inserted into
a Hough-Transform space to vote for dominant transforma-

Figure 1: Line features for the “old town hall” data set.

tions [MGP06,LE06,PSG∗06,MGP07,PMW∗08]. This ap-
proach is very elegant and gives good results in many cases.
The main limitation is however that all transformations end
up in the same voting space with spatial correlation informa-
tion lost so that the problem of isolating the relevant sym-
metries becomes harder when the number of different sym-
metries grows [PMW∗08]. As a consequence, these tech-
niques have so far only been applicable for coarse, large
scale symmetries [MGP06, PSG∗06], in special cases were

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

M. Bokeloh et al. / Symmetry Detection Using Feature Lines

the model can be decomposed hierarchically [MGP06], or
if the symmetries form regular patterns in transformation
space [PMW∗08].

The goal of this work is to detect a large number of sym-
metries without such prerequisites. The key observation for
an improvement in recognition capabilities is that we can ex-
pect some spatial coherence: The instantiated part, which is
found several times in the model under a symmetry transfor-
mation, will typically itself form a localized, coherent spatial
object: Nearby points are likely to show the same symmetry
pattern. This information is lost in transformation space.

In order to exploit this information, we choose a differ-
ent approach: We first identify discrete features on the ob-
ject surface and form a spatial neighborhood graph of such
features. Next, we examine the graph for reoccurring pat-
terns using a randomized matching algorithm. Finally, the
results from matching local clusters of features are trans-
ferred and validated on the original geometry. Matching
of locally coherent feature sets for symmetry detection has
been examined previously by Berner et al. [BBW∗08]. How-
ever, their sets of stable keypoints are often not dense enough
to find large sets of symmetries. We improve upon their algo-
rithm by using pairs of linearly slippable regions instead of
keypoints and a different matching algorithm that performs
multiple nested loops of RANSAC-based pattern matching
[FB81]. The new strategy yields both a substantial improve-
ment in recognition rates as well as a significant improve-
ment in running times. As an example application for our
technique, we apply the algorithm to symmetry-based auto-
matic reconstructing of scanning data [GSH∗07,PMW∗08].

Our paper makes two main contributions: First, it pro-
poses a novel symmetry detection algorithm that can find
rigid symmetries in general configurations. The algorithm
works efficiently on large data sets, up to two orders of mag-
nitude more complex than previous state-of-the art results.
Second, we develop a framework for rapid geometry match-
ing based on sparse sets of feature lines. In addition, we ap-
ply the detected symmetries to automatic quality improve-
ment in scanner data and show that the large amount of re-
dundancy discovered can substantially improve the model
quality in a fully unsupervised way.

2. Related Work

Transformation voting techniques for symmetry detection in
geometry have been introduced by Mitra et al. [MGP06], and
Podolak et al. [PSG∗06], as well as Loy and Eklundh [LE06]
for image features. While the two latter consider reflections
and rotational symmetries, respectively, the technique of Mi-
tra et al. is slightly more general than ours by also allowing
for scaling. Although it would be conceivable to extend our
technique to scaling by considering triples instead of pairs of
line features (see Section5), we restrict ourselves to the rigid
case for simplicity. The symmetry detection technique of

Mitra et al. has subsequently been extended to automatic ob-
ject symmetrization [MGP07]. In recent work [PMW∗08],
an extension to find regular patterns has been proposed: If
the objects show regular patterns of symmetries, such as reg-
ularly spaced rows of windows in a building, one can explic-
itly look for these patterns in transformation space to obtain
much more stable results. However, this approach can only
identify such patterns; symmetric parts in isolated instances
or as members of different patterns are not identified as be-
longing to the same class of objects.

Gal and Cohen-Or [GCO06] propose a variant of trans-
formation voting that uses geometric hashing [LW88] of
salient features. The authors give examples of detecting a
small number of symmetric parts within an object. Simari
et al. [SKS06] detect planar reflective symmetries by com-
puting an auto-alignment of parts of a shape with itself us-
ing iteratively reweighted least-squares. This yields a nested
symmetry decomposition. Such approaches are limited to
cases where large and small scale symmetry patterns cor-
relate. Martinet et al. [MSHS06] propose a technique that
uses a transformation to generalized moment functions in
order to compute global symmetries of 3D shapes. Kazh-
dan et al. [KCD∗03] analyze objects for central symmetry
and use this as a descriptor for shape retrieval. A very inter-
esting application of symmetry detection is shape comple-
tion: Thrun and Wegbreit [TW05] compute symmetries of
partially scanned objects to complement the partially shape.
Schnabel et al. [SWWK08] use graphs of fitted geometry
primitives to perform object recognition.

Berner et al. [BBW∗08] perform subgraph matching in
graphs of feature points, which are defined as regions in
which the auto-alignment problem of local patches is fully
constrained. We relax this requirement to partial constraints
(feature lines), which can be detected more easily and fre-
quently, thus improving the results drastically. Our method
needs a feature detection step that extracts surface lines
[GWM01,PKG03,OBS04,HPW05]. In principle, any such
feature line detection algorithm can be used at this stage.
The specific method presented in this paper has the advan-
tage that it outputs the curvature of the lines as side infor-
mation without additional computations, which we use to
detect stable bases and to prune line matches. This informa-
tion is retrieved using slippage analysis, which yields stable
results even in case of complex surface pattern with rather
vague curvature information. Our method is based on lo-
cal surface fitting [OBS04] so that we obtain detailed and
stable results with higher resolution than previous point-
based techniques based on a local planarity analysis via PCA
[GWM01, PKG03]. The point-sample-based representation
of our feature lines furthermore facilitates handling of com-
plex line patterns in the context of our application, where the
knowledge of line topology is not relevant.

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.

M. Bokeloh et al. / Symmetry Detection Using Feature Lines

Figure 2: Overview: We extract line features from the input model. Inside the inner loop, we search for symmetric constellations
of line features and pass the best candidate to the validation stage, where we verify it taking all data points into account. We
repeat this process several times inside the candidate loop and return the best candidate (one symmetric part with its instances).
This set is then refined, in order to find more instances. An outer loop repeats the process to find several symmetries.

3. Algorithm Overview

Our algorithm consists of three main stages (see Figure2):
Feature detection(Section4), line-feature matching(Section
5) andgeometric validation(Section6). The last two steps
are used iteratively in an outer loop (Section7). Finally, the
symmetry information is then used for scan reconstruction
and other applications (Section8).

The first stage extracts line features and identifies suitable
pairs of these features to define local coordinate systems that
we call “bases”. The second stage then tries to find subsets
of such bases so that line features in their local neighbor-
hood match. In order to verify the matching, the algorithm
uses an“iterative-closest-line (ICL)” algorithm that aligns
and compares sets of line features. The rationale behind this
design is that a comparison of a sparse set of line features is
substantially more efficient than comparing actual geometry,
while still achieving a very high matching accuracy. Proba-
bly even more important, matching of line features is more
resistant to holes and outliers in the data than conventional
geometry alignment techniques such as ICP [CM92,BM92]
(see Figure4).

In the next stage of the algorithm, geometric validation,
we transfer our findings to actual geometry, i.e. the input
point cloud. As the line feature representation is sparse, this
step is necessary in order to correctly assign geometric re-
gions to found instances. It computes disjoint instances of
geometry that are replicated by the symmetry transforma-
tions. Line feature matching and geometric validation are
repeated in a “candidate (RANSAC) loop”, outputting the
best match only, to avoid spurious matching results. Once
we know the actual instances of symmetric geometry, we re-
fine our results in a second matching pass to increase the
number of recognized instances: We detect additional bases
belonging to the instances by checking for overlap with the
points computed in the geometric validation stage. In addi-
tion, we also try to extrapolate known transformations to
discover possibly undetected parts in a transformation pre-
diction step. Afterwards, geometric validation is performed
again. This yields a single symmetric part with all its final,

typically larger, set of instances. Finally, the outer loop of
the algorithm iterates this whole procedure several times in
order to find several different classes of symmetry in the
model.

4. Feature Extraction

The task of the feature extraction step is to discretize the
continuous matching problem, which allows us to perform
a discrete matching of feature pattern rather than continu-
ous matching techniques. The crucial point at this stage is to
retain the important information about object shape when re-
ducing the object from a continuous surface to a finite set of
features. As we are looking for rigid mappings, the local fea-
ture geometry must determine a rigid mapping. This means,
the associated geometry must “lock-in”; in other words, the
auto-alignment problem of registering this geometry with it-
self must be constrained in all 6 degrees of freedom.

This problem can be addressed by aslippage analysisof
the local geometry [GG04]. Slippage analysis determines
whether the problem of aligning a piece of geometry with
itself is well posed: It sets up an ICP objective function
(the sum of all point-to-plane surface distances of surface
points with themselves), with 6 degrees of freedom (3 trans-
lational and 3 rotational). The eigenvalues of the Hessian
of the objective function determine whether the geometry is
slippable: Any surface is necessarily constrained in at least
3 degrees of freedom when being matched to itself. The
eigenvectors of the Hessian with eigenvalues (numerically
close to) zero, here calledslippage vectors, describe the as-
sociated degrees of freedom. The slippage vectors may mix
translational and rotational degrees of freedom (see the pa-
per of Gelfand and Guibas for details [GG04]). Berner et
al. [BBW∗08] use this information to pick points that are
maximally constrained in all degrees of freedom and max-
imize this property in scale space. However, the number of
such points that can be identified stably is limited and be-
comes the main bottleneck for the purpose of symmetry de-
tection.

In order to improve the recognition performance, we need

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.

M. Bokeloh et al. / Symmetry Detection Using Feature Lines

Figure 3: Line features for the Happy Buddha model (mid-
dle) and two detected symmetries (right).

to generalize the notion of a feature. The main idea of our
feature detection strategy is to not rely on a single feature to
define correspondences but employ groups of more than one
feature. If we have feature regions that are completely un-
slippable, a single such region yields a rigid constraint. For
a slippable region with one degree of freedom (one dimen-
sional null space of the Hessian), we need two regions and
have to demand from their slippability vectors (eigenvectors
of the Hessian with eigenvalue zero) to span different sub-
spaces. Accordingly, we can also look for feature regions
with two or three slippable degrees of freedom. Depending
on the dimension of the intersection of their nullspaces, we
might need at least two or three such regions to fix a rigid
mapping.

In this paper, we only consider the case of pairs of fea-
ture regions that are still slippable in one dimension, with
a non-zero translational component. This corresponds to re-
gions with arbitrary cross section extruded along (locally)
straight or circular lines. As such regions will have a one-
dimensional symmetry direction, we refer to them asline
features. We do not yet consider the more general case of
2D or 3D slippable regions. In practice, 1D slippable feature
lines contain most of the salient information and thus pro-
vide a both compact and efficient representation. They work
particularly well for man-made objects such as architectural
models (Figure1), but we also obtain descriptive results for
many natural objects such as faces or sculptures (Figure3).
Our goal is now to extract such 1D-slippable regions from
the input geometry. As being slippable in one direction, these
regions will have a linear structure.

MLS Line Features: Conceptually, we base our line fea-
ture detection on a moving least squares scheme: We define a
projection operator that moves points orthogonal to the local
1D slippage direction and the surface normal, trying to max-
imize curvature along this line. Performing such projections
repeatedly will yield a point-sampled feature line represen-
tation.

As input we expect a point cloud̃S = {x1...xn} sam-
pled from a smooth manifoldS ⊆ R3 where each pointxi
is equipped with a normal vectorni . We now define the

projection operator: In order to project a pointp, we first
compute a local slippage analysis ofp (we use a Gaus-
sian window function centered atp with standard deviation
ε f eat). Slippage analysis gives us a set of unit-norm eigen-
vectorsv1, ...,v6 that represents slippable motions and the
corresponding eigenvaluesλ1 ≤ . . . ≤ λ6. We are only in-
terested in the first eigenvectorv1 that represents the most
slippable rigid motion. Fromv1 we extract the translation
part s, which becomes our estimate of the tangential direc-
tion of the line. We now find a local maximum of the mean
curvature along the directions×n. We use a simple gradi-
ent descent algorithm that stops were the gradient vanishes.
To compute the mean curvature of a given surface patch we
fit a local quadratic patch in a least-squares sense, again us-
ing the same Gaussian window function, and compute the
eigenvalues of the quadratic component. We also recompute
the slippage analysis at the final feature point and store the
first eigenvector.

The Gaussian windowing function in the MLS scheme
limits the frequency resolution of the line detection. There-
fore, we only need to consider a sparse sampling of the fea-
ture lines: We compute a Poisson disc sampling of the point
cloud with radiusε f eat and project only this subset. For sam-
ple points where the local geometry is slippable in more than
one direction (we usedλ1/λ2 > 0.5 in every example), we
stop the projection immediately and reject the point. We also
reject points that move by more thanε f eat (they will be han-
dled by neighboring samples) and points with less than 40
neighboring points in the Gaussian window.

Our algorithm outputs a sparse, point-based representa-
tion of feature lines, along with the local tangential direction
and curvature of the feature line, which are computed from
the translational and rotational component of the slippage
vectorv1, respectively.

Building a Feature Graph and Bases:The next step of
our algorithm is to build a graph of the detected line seg-
ments. The goal of this step is to connect “interesting” com-
binations of feature lines that are spatially close. For this, we
connect every line segment to itsk-nearest neighbors (We
usek = 100). However, we limit the number of connections
for segments representing the same line. For every connec-
tion, we check whether we have already connected to a line
that describes the same circular arc and allow only one such
connection per arc. As a result, we connect several lines of
different type, even when they are farer away, while line seg-
ments describing the same feature lines are only connected
locally to form a connected component.

Next, we perform a coarse segmentation of the line seg-
ments into longer pieces in order to identify longer and thus
more relevant feature lines. For this, we walk along the graph
of lines and group lines that lie on the same circular arc. We
call these groupsline cluster, representing a longer piece of
a line feature of constant curvature. From these line clusters,
we now formbases, which represent local coordinate frames

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.

M. Bokeloh et al. / Symmetry Detection Using Feature Lines

that will be used as matching candidates in later steps of the
algorithm. Again, we walk along the graph and find all edges
that connect between two line clusters for which their union
is sufficiently non-slippable and store the pair of feature lines
as basis. The same combination of two clusters is used only
once (not once per individual line segment). However, we
store two bases for each pair of clusters, with first and second
coordinate axes exchanged. This allows us to handle mirror-
ing. In order to reduce the number of spurious bases, we re-
quire that the two line clusters consist of a minimum number
of line segments (typically, at least 4-8).

5. Line-Feature Matching

Having obtained a set of feature lines, our symmetry detec-
tion algorithm tries to find local constellations of these fea-
ture lines in different parts of the model that are similar. We
use two steps: First, we identify a set of base matching candi-
dates to estimate initial transformations. Second, we exam-
ine the line features in the neighborhood in order to verify
the match. These two steps are iterated in a RANSAC like
matching loop in order to find the best matches (this is the
inner loop in Figure2).

Base Matching: In order to find matching bases, we pick
a random base out of the previously extracted set. Please note
that large symmetries with many instances are automatically
preferred in the random pick as they contain more bases.
The base consists of two line clusters with different direction
of slippability, therefore defining a local coordinate frame.
Next, we find all other bases that could be potential matches,
regarding only local information about the bases. For this,
we build a simple feature descriptor: For each base, we store
the curvature of the two lines involved and the average mean
curvature of the surface points of the underlying geometry.
We use a matching threshold for these values of 0.1/ε f eat. In
case both lines are straight lines with no curvature, we also
include the angle at which the two lines meet in order make
the criterion more discriminative. For each of these candi-
dates with matching descriptors, we now compare the lines
in its neighborhood by an alignment algorithm. Before going
into details of the procedure, we first discuss the alignment
algorithm:

Iterative Closest Lines (ICL): Our iterative closest line
(ICL) algorithm is a straightforward generalization of the
point-to-plane ICP algorithm [RL01] to aligning line seg-
ments. The idea of sampling well constrained regions is also
similar in spirit to the adaptive ICP technique in [GIRL03].
We assume that we are given a point-sampled representation
of curved lines: We have a set{xi} of sample points on the
lines, each equipped with a unit tangentt(xi), a unit normal
n(xi) that describes the normal of the surface the line lives
in. By construction, these two are orthogonal. From this, we
also compute the normalb(xi) = t(xi)×n(xi) to the feature
curve in its tangent plane. Our goal is now to align two differ-

ent sets of curved lines{x(0)
i }, i = 1..n and{x(1)

j }, j = 1..m.

Figure 4: ICL example: Aligning two disjoint subsets of a
3D scan. Maximum alignment error: 0.6% of the maximum
bounding box side length. Third column: initial pose.

Similar to the ICP algorithm, we first compute the closest

point from the set{x(1)
j } to each point from{x(0)

i }. We de-
note the index of the closest neighbor byN(i). Given the
correspondences, we minimize the following energy func-
tion:

E(R, t) =
n

∑
i=1

ω
(

dist(x(0)
i ,x(1)

N(i))
)
·
[
dist(x(0)

i ,x(1)
N(i))

]2
(1)

with

dist(x,y) = ‖[n(x) |b(x) |0] (x− (Ry+ t))‖ (2)

whereω is a one-dimensional Gaussian window function,R
is an unknown orthogonal matrix andt an unknown transla-
tion. The first matrix in Equation2 is a projection matrix that
removes the tangential component from the distance vec-
tor connecting two line segments, thus only measuring the
point-to-line distance. For the optimization, we use the stan-
dard approach of locally linearizing the manifold of orthog-
onal matrices and solving iteratively [MGPG04].

RANSAC Search: As the set of feature line segments
is much smaller than the number of original surface points,
the ICL-alignment technique described above is significantly
faster than a full alignment of the geometry. Therefore, we
can afford to perform a large number of alignment tests in
order to find matching candidates. We use this to perform
a RANSAC-like randomized matching algorithm: We per-
form a number of iterations, searching for potential model
symmetries. The output of each iteration is a list of candi-
date symmetries, which we score. In the end (after typically
100 trials), we keep only the best symmetries found.

Each iteration starts with computing a random baseB0,
and a set of potentially matching basesB1...Bn for which the
descriptors match. Next, we compute a pairwise matching
score comparing the neighborhood ofB0 to all other bases
Bi separately. Matching the neighborhood lines of two bases
proceeds in several steps: First, we align only the lines that
form the basesB0 and Bi themselves, which can be com-
puted analytically. At this point, the feature line representa-
tion has the advantage that matching pairs of lines already
gives a stable initial guess, unlike feature point matching

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.

M. Bokeloh et al. / Symmetry Detection Using Feature Lines

[HFG∗06,BBW∗08]. Then ICL is used to refine the match.
After aligning the lines of the basesB0 and Bi , we walk
on the graph of adjacent line segments in a region grow-
ing algorithm. We start by putting all line segments adjacent
to those inB0 on a priority queue sorted by distance. We
then subsequently retrieve the next closest line segment from
the queue and compute the weights of the point-to-line dis-
tances (Equation (1)) for the transformed lines. If the result-
ing weightω (which now serves asmatching scorefor this
segment) is smaller than a fixed threshold (typically: 0.02),
we discard the segment. Otherwise, we add the weight to
the overall matching score ofBi and put its neighbors on the
queue. The algorithm stops if the queue is empty or a maxi-
mum distance is reached (typically: 10% of the model size),
to limit the costs.

After region growing, we perform a second ICL alignment
step with all lines that were close to other lines (i.e., had
high enough matching scores), refining the initial alignment.
Next, the growing algorithm is performed again and might
find further lines that became matches after the refined align-
ment. With this new matching set, a final alignment is com-
puted and stored along with the match. If the overall match-
ing score ofBi is too small in the end (< 50), the whole base-
pair(B0,Bi) is dismissed. Otherwise, we test if the baseBi is
close to a base previously matched toB0 (by computing the
maximum point-to-line distance of the corresponding line
segments). Here, close means in the range of sample spacing
- we typically employ a threshold of 0.5ε f eat. If such double
matches are detected, we pick from the set of all colliding
matches the one that achieved the largest matching score.
This step avoids “ghosting artifacts” when matching objects
with several parallel lines (for example window frames). Fi-
nally, if all these tests have been passed, we included the
match{B0,Bi} into the set of found matchesM(B0).

The previously described algorithm finds in each run a
set of matches of bases along with rigid transformations that
describe potential symmetries in the object (pending geo-
metric verification on the full point set, described in the
next section). The quality of the matches differs strongly,
depending on which baseB0 had been chosen as starting
base. Therefore, we execute the algorithm several times (typ-
ically 100×) and output only the best match found to the
next stage, geometric validation, which is more costly. The
score this decision is based on is computed as:

score= matching_scoreav ·#instances2 (3)

matching_scoreav refers to the previously determined sum
of weights of the matched lines, averaged over all valid in-
stances out of{B1...Bn}. It grows if more matching lines
are found per instance. The number of instances is the num-
ber of valid base matches found. By squaring, the number of
instances gets a stronger weight; we prefer slightly smaller
instances if this allows us to find many more of them. The
rationale behind this is that finding one more instance makes

a symmetry more plausible than just adding one more line
segment.

6. Geometric Validation

So far, we have done all computations on the line features of
the surfaceS only. This usually gives a good indication of
actually corresponding geometry but we now need to verify
this on the full geometry, i.e., the original point set. At this
stage, we will also form concrete, disjoint pieces of geom-
etry that form the instances of a symmetry. As input to this
stage, we are given a set of bases{B0, ...,Bk} and their as-
sociated (ICL-refined) transformations{T1, ...,Tk} between
B0 and {B1, ...,Bk}. The output of the algorithm is a sin-
gle point cloud, which we callurshape, that fits parts of the
original geometryS when being transformed by any of the
transformations{I ,T1, ...,Tk}. The transformed instances are
disjoint and the urshape is maximal, i.e., cannot be extended
without exceeding a given error threshold.

Basic region growing:We perform region growing, start-
ing at the bases, and collect all points that match in other
instances. In order to start growing, we first choose one
point of the basisB0 as areference point. Next, we trans-
form the reference point into all other instances. In each in-
stance, includingB0, we compute the sample point from the
sample manifoldS that is closest to the respective trans-
formed reference point. We will then use these points as
starting points for region growing and stop if points are al-
ready occupied by another instance or the transformed ge-
ometry does not match. The region growing will proceed by
Euclidian distance to the starting points, which yields nice,
Voronoi-type boundaries. We initiate growing by inserting
the starting points into a priority queue. The queue is sorted
by Euclidean distance to the corresponding reference points
in each instance. Afterwards, we iteratively extract points of
minimum distance from the queue, transform it into all in-
stances, and test for geometry mismatch and collisions with
different instances. Only if neither is the case, growing will
continue.

For the test of geometric mismatch, we cut out a small

sphereS(i)
compof fixed radiusrcompand compare the resulting

geometry in each instance. Because a test of normal differ-
ences and position of a single point is very instable for a
noisy and irregular sampled point set we fit in each instance

a plane to the data points inS(i)
comp. We then compare the

distance to the center of the sphere and the normal devia-
tion between all pairs of instances (we use a threshold of
25◦). If the geometry matches in most instances (we allow
20% of the checked instances to be outliers in order to make
the algorithm more robust against structured noise, which
is present in all our example data sets), the point is tagged
as occupied by this instance, transformed back into the ur-
shape by(T)−1

i and added to the urshape. Points that have
already been occupied are not added to the urshape. In the

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.

M. Bokeloh et al. / Symmetry Detection Using Feature Lines

other case, we add all neighbors withinS(i)
comp to the priority

queue to continue growing.

Grid based growing: The basic region growing algo-
rithm with its test of every point is too expensive for huge
models. We improve the performance by looking at surface
pieces at once rather than isolated points. We impose a regu-
lar grid onto the urshape and treat all points within one grid
cell simultaneously. In particular, the decision to include or
not include a piece of geometry is now made per voxel cell,
rather than per point. When the basic algorithm compares a
piece of geometry, we set the radiusrcomp to 2× the grid
cell diagonals. Please note that the voxel grid is imposed on
the urshape only and not on the whole model; the geometry
in the voxel is transformed to the instances for comparison.
This avoids aliasing problems in the that would occur if we
were comparing pairs of voxels.

Handling holes: One application of symmetry detection
in 3D scanner data is filling up acquisition holes and equal-
izing sampling density. Therefore, we need to be robust to
acquisition holes. Our solution is to check the number of

points within the spheresS(i)
comp. If too few points are found

(typically: less than 6), no reliable plane fit is possible and
we treat the voxel as a “hole”. We use a relaxed threshold
for outlier mismatches due to holes (up to 30% in terrestrial
scanner datasets), allowing for matching partial data more
robustly.

Refinement:A drawback of the algorithm as presented so
far is that it can only detect a class of instances that all con-
tain the same basis (in the sense of a pair of lines with the
same curvature, placed roughly at the same spatial location).
In order to improve the recognition performance for difficult
data sets, we now include adjacent bases into the search (this
is the “second pass” in Figure2): After geometric validation,
we know the concrete area covered by the instances. There-
fore, we can check which other bases are also covered by
the geometry and try to match them as well. We compute all
bases covered by an instance and project them back into the
urshape. In the urshape, we cluster similar bases, i.e., con-
sisting of approximately the same lines. For each cluster, we
maintain a counter to vote for bases that are contained in
many symmetric instances. Having a weighted list of other
bases contained in the same instance, we now execute the
line matching algorithm of Section5 again, starting at these
alternative basis. Instead of region growing, we directly fix
the area to be checked by the line segments that fall onto
the urshape when being back-projected. In order to limit the
computational costs, we do not check all alternative bases
(which can be thousands), but rather sample a small num-
ber of bases (typically 5) randomly, with probability propor-
tional to the number of votes for each basis. After this step,
we execute region growing again, now including all newly
found instances.

We can improve the recognition rates further using a pre-
diction heuristic, inspired by [PMW∗08]: We consider the

relative transformations between instances that are spatially
close and recursively check whether we can find a matching
line constellation if we apply this transformation again to an
instance at the boundary of the detected area (a candidate
transformation at a boundary will transform a base such that
it does not come close to an already known base).

In order to evaluate the utility of the different passes, we
have looked at the percentage of instances detected in each
step, relative to the overall number found. For the “old town-
house” data set, for example, the basic algorithm itself al-
ready detects all of the finally detected instances in about
75% of the symmetric parts. In the remaining cases, looking
at nearby bases accounted for 40%, in one case 80% of the
matches. Prediction detected 25%-40% in the cases where
basic matching was not successful. For other datasets, we
obtain comparable results; prediction is of course most use-
ful in architectural data sets with regular pattern. However,
the technique is not limited to fixed grids in transformation
space but also works for partially regular data. Even without
any successful prediction, we are able to find most detectable
instances in the majority of the cases.

7. Candidate Loop and Outer Loop

So far our algorithm is able to detect a single urshape and
a set of transformations that transform this urshape into
places where symmetric geometry exists, giving a single
symmetry pattern. We now employ an outer loop to itera-
tively detect many such patterns. We execute the whole al-
gorithm described so far multiple times, tagging all points
and nearby bases and line segments as “visited” in each val-
idation (growing) step.

Candidate loop: We can make this basic strategy more
reliable by again employing a RANSAC-like randomized
sampling approach: Instead of removing and thus finalizing
symmetric geometry after finding one new set of matches,
we first compute a larger number of matches (typically
5 matches), including geometric validation (the refinement
step described in the preceding paragraph is actually done
after the candidate loop, on its result, to safe some compu-
tation time; see Figure2). From the candidate set, we pick
only the best match. The score for this decision is computed
as number of (voxel-quantized) sample points in the urshape
multiplied by the number of instances squared (similar to
Equation (3), again preferring many instances over few in-
stances with many points. The outer RANSAC loop stops
when a fixed number of outer loop iterations has passed. We
do not accept symmetries covering fewer than a minimum
number of data points (less than 1,000) to avoid spurious
matches. This prevents outputting “garbage” solutions after
all detectable symmetries have been found. An interesting
side effect of this strategy is that the algorithm will output
the “most important” symmetries first, which are symme-
tries with many instances covering a lot of area.

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.

M. Bokeloh et al. / Symmetry Detection Using Feature Lines

Figure 5: Reconstruction examples for the data sets old
town hall and Zwinger (rightmost).

8. Applications

As an application of our symmetry detection algorithm,
we consider an automatic reconstruction-by-symmetry algo-
rithm, in the spirit of [TW05,PMG∗05,GSH∗07,PMW∗08].
Many real-world range scans suffer from strongly irregular
sampling, noise and acquisition holes. We will automatically
detect similar parts and compute a high density average to
improve the sampling quality in regions where such redun-
dant information is available.

Our reconstruction technique first computes an improved
urshape and then transforms the improved version back into
the instances, replacing the distorted geometry. We start the
urshape improvement by copying all points of all instances
into the urshape, taking all points into account that fall into
one of the urshape voxel cell under the instancing transfor-
mation. From this set, we remove outlier points. Outliers
are points that show up in less than 30% of the instances.
For this co-occurance test, we use a small sphere around the
sample point, according to the scanner sample spacing, and
check whether the instance provides such a supporting point
within that radius. The remaining non-outlier points are then
smoothed using a quadratic MLS approximation.

9. Implementation and Results

We have implemented the proposed symmetry detection and
reconstruction system in C++. Timings have been obtained
on a standard PC with Core2 Duo at 2.4Ghz, using a single
threaded implementation. In order to visualize the results,
we assign a unique color to each symmetry. If two instances
of the same type share a border, we indicate this by drawing
a black/white colored line in between. In the following, we
discuss the results for several test data sets.

Synthetic example: As a synthetic example for com-
pletely irregular patterns of symmetry, we have engraved the
Eurographics logo into a flat plane, rotated and shifted ran-
domly. For some of the instances, we have cut out holes of
different size. Our algorithm is able to detect all of the logos
automatically (Figure8); it discovers the reflective symme-
try of the logo, leaving non-symmetric parts in the letter G
out, and detects all instances of these in the scene. If we add

Gaussian noise with a standard deviation of 5% of the maxi-
mum heightfield height, some of the instances with big holes
are not retrieved anymore but we still obtain good results for
most of the symmetric parts.

Real world scanner data: We also apply the proposed
algorithm to raw 3D scanner data. Our first example is a
scan of a museum (Figure6, left). We are able to recognize
most of the apparent symmetries, including most of the pos-
sible instances (such as the windows in the front). In partic-
ular, we detect instances as belonging to the same class that
are not part of a simple regular pattern (see for example the
jutty in the middle of the building). A remaining limitation
of our approach is the fixed allocation of geometry to a sin-
gle instance. Therefore, some choices of forming instance
preclude detecting some other symmetries (for example: the
small window above the jutty, which is not combined with a
larger window below, unlike most other of these small win-
dows). This effect is responsible for most of the missed out
symmetries in this example. Please note that we do not ob-
tain any false positives. This shows that the multi-stage fil-
tering strategy of our algorithm is successful in that respect.

Our second test case is a scan of the old town hall in
Hannover (Figure7). This is our largest example. In order
to bound the computation time, we use a fixed number of
25 outer loop RANSAC iterations, which yields 19 success-
fully detected (i.e., large enough) instance sets. In this case,
we detect may symmetries with a large number of instances.
However, we also obtain some symmetries covering a large
area with a small number of instances (for example the fa-
cade to the left). These regions mostly consist of small win-
dows with few horizontal lines which makes a detection of
the small scale instancing structure harder, so that the ini-
tial set (before refinement) is not likely to contain many in-
stances. Therefore, the large symmetry often wins the outer
loop RANSAC decision by its area. Again, this problem
could be resolved by relaxing the restriction of simple, non
nested and non-overlapping instances, which we leave for
future work.

The last example is the Zwinger data set from [BBW∗08].
In comparison to Berner et al.’s approach, we obtain signif-
icantly better recognition results (detecting all windows in-
stead of only two instances).

To examine the limits of our algorithm, we have applied it
to the Happy Buddha data set. This yields only two small re-
flective symmetries (Figure3). Line detection and matching
works in principle for such data sets, but the main problem
in this case is that the data set does not contain larger rigidly
symmetric parts.

Reconstruction: We apply our reconstruction approach
to the front of the old town hall and to the Zwinger data
set (Figure5). With our symmetry reconstruction technique
we obtain a significantly improved quality. Surprisingly, the
quality is better than one would expect from just averaging a
small number of instances (just leading to square-root error

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.

M. Bokeloh et al. / Symmetry Detection Using Feature Lines

Figure 6: Detected symmetries in real world 3D scans – left: Museum (data set courtesy of the Institute for Cartography and
Geoinformatics Hannover). right: Dresden Zwinger (data set courtesy of M. Wacker).

Figure 7: Old Town Hall Hannover (courtesy of the Institute for Cartography and Geoinformatics Hannover).

decay). The reason for this is that we do not only average out
noise, but also increase the sampling density; in these exam-
ples, an insufficient sampling density lead to more geometric
uncertainty than the noise in the distance measurements. In
addition, we can also fill holes such as the window frames,
which are typically acquired from at one side only.

Performance: Statistics and timings for the example
scenes are shown in Table1. Our largest data set, the old
town hall, took about 50 minutes to process, with a little less
than half of the time spend in feature detection. In compari-
son to [PMW∗08], we are able to handle scenes that are sub-
stantially larger than the data sets examined in their paper.
In terms of running time, we have comparable requirements,
taking the size of the model into account.

Parameters:Our algorithm depends on a number of pa-
rameters. Most of these parameters are constants for all data
sets, using the “typical” values given in the text above. There
are a few parameters that have to be set manually for each
data set. The basic parameter is a resolution parameterεres,
from which most others are derived: This parameter has to
be set to the sample spacing or the noise level of the input
data (whatever is larger). Currently, we estimate this manu-
ally and use a constant for the whole scene. Given this quan-
tity, we setε f eat as well as the voxel size for region grow-
ing to 5εres and set the standard deviation of the weighting
windows in ICL toεres. For very noisy data sets, enlarging
this value might slightly improve the results; for the noisy
logo test scene (only there), we use 1.5εres. We also useεres

as threshold for the maximum distance of lines in cluster-
ing the line segments. There is one more spatial parameter
proportional toεres: the distance threshold in region grow-

Figure 8: Synthetic data set – left: noisy input data, middle:
recognition results for noise free data, right: results for noisy
data.

ing, which determines the allowed geometric variation in in-
stances. A value of 2εres usually gives good results, but there
is a delicate trade-off between too small instances and miss-
ing small features. We think that improving upon this might
require a global optimization technique for laying out the in-
stance shape, for example using a graph cut in the urshape
domain, which we have to leave for future work. A last set of
parameters is the number of RANSAC loops. We always use
100 iterations of the inner loop and 5 for the candidate loop;
more can only improve the results, at higher costs. The num-
ber of outer loops limits the number of detected instances.
We use an exhaustive number of iterations (i.e., the algo-
rithm stops finding new instances before terminating) in all
examples except for the largest one, as discussed above.

10. Conclusions and Future Work

In this paper, we have presented a new algorithm for symme-
try detection. The main idea is to look for symmetric con-
stellations of feature lines on 3D surfaces in order to find

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.

M. Bokeloh et al. / Symmetry Detection Using Feature Lines

Points Feature Clustering Symmetry
Detection + Graph Detection

Plate 880.673 25s 1.1s 1m 59s
Plate (noise) 880.673 1m 12s 3.3s 3m 14s
Old townhall 7.735.576 23m 12s 25.8s 32m 40s
Museum 2.200.652 4m 44s 5.2s 13m 36s
Zwinger 278.512 32s 2.3s 3m 25s

Table 1: Statistics of the datasets used in this paper.

similar parts. In comparison to previous transformation vot-
ing algorithms, we avoid the problem of cluttering the trans-
formation space and therefore get a good recognition per-
formance without additional assumptions on the structure of
the symmetries. In comparison to previous attempts of using
feature points for symmetry detection, feature lines yield a
significant improvement in recognition results. As a side ef-
fect, the reduction to feature lines reduces the amount of data
to be examined substantially, allowing for handling substan-
tially larger models than previous algorithms. A limitation
of our algorithm is that the reconstruction only works if in-
stances are all exactly similar. In future work, we would like
to build morphable statistical models of symmetric parts to
better represent subtle variations beyond the accuracy of the
region growing algorithm. In addition, we would also like to
examine more general strategies in matching graphs of sur-
face features, beyond rigid mappings.

Acknowledgments

The authors would like to thank Benjamin Jogsch for his
help and the anonymous reviewers for their valuable com-
ments. This work has been supported by DFG grantPercep-
tual Graphicsand the Cluster of Excellence for Multi-Modal
Computing and Interaction.

References

[BBW∗08] BERNER A., BOKELOH M., WAND M., SCHILLING

A., SEIDEL H.-P.: A graph-based approach to symmetry detec-
tion. In Proc. Symp. Point-Based Graphics 2008(2008).

[BM92] BESL P. J., MCKAY N.: A method for registration of 3-d
shapes.IEEE Trans. Pattern Anal. Mach. Intell. 14, 2 (1992).

[CM92] CHEN Y., MEDIONI G.: Object modelling by regis-
tration of multiple range images.Image Vision Comput. 10, 3
(1992), 145–155.

[FB81] FISCHLER M. A., BOLLES R. C.: Random sample con-
sensus: a paradigm for model fitting with applications to image
analysis and automated cartography.Comm. ACM 24, 6 (1981).

[GCO06] GAL R., COHEN-OR D.: Salient geometric features for
partial shape matching and similarity.ACM Trans. Graph. 25, 1
(2006), 130–150.

[GG04] GELFAND N., GUIBAS L. J.: Shape segmentation us-
ing local slippage analysis. InProc. Symp. Geometry processing
(2004), pp. 214–223.

[GIRL03] GELFAND N., IKEMOTO L., RUSINKIEWICZ S.,
LEVOY M.: Geometrically stable sampling for the icp algorithm.
In Proc. Int. Conf. 3D Digital Imaging and Modeling(2003).

[GSH∗07] GAL R., SHAMIR A., HASSNER T., PAULY M.,
COHEN-OR D.: Surface reconstruction using local shape priors.
In Proc. Symp. Geometry Processing(2007).

[GWM01] GUMHOLD S., WANG X., MACLEOD R.: Feature ex-
traction from point clouds. InProc. Meshing Roundtable(2001).

[HFG∗06] HUANG Q.-X., FLÖRY S., GELFAND N., HOFERM.,
POTTMANN H.: Reassembling fractured objects by geometric
matching.ACM Trans. Graphics 25, 3 (2006), 569–578.

[HPW05] HILDEBRANDT K., POLTHIER K., WARDETZKY M.:
Smooth feature lines on surface meshes. InProc. Symp. Geome-
try Processing(2005).

[KCD∗03] KAZHDAN M., CHAZELLE B., DOBKIN D.,
FUNKHOUSER T., RUSINKIEWICZ S.: A reflective symmetry
descriptor for 3d models.Algorithmica 38, 1 (2003), 201–225.

[LE06] LOY G., EKLUNDH J.: Detecting symmetry and symmet-
ric constellations of features. InProc. Europ. Conf. Computer
Vision(2006), pp. 508–521.

[LW88] LAMDAN Y., WOLFSON H. J.: Geometric hashing: A
general and efficient model-based recognition scheme. InProc.
Int. Conf. Computer Vision(1988).

[MGP06] M ITRA N. J., GUIBAS L. J., PAULY M.: Partial and
approximate symmetry detection for 3d geometry.ACM Trans.
Graph. 25, 3 (2006), 560–568.

[MGP07] M ITRA N. J., GUIBAS L., PAULY M.: Symmetriza-
tion. In ACM Transactions on Graphics(2007), vol. 26.

[MGPG04] M ITRA N. J., GELFAND N., POTTMANN H.,
GUIBAS L.: Registration of point cloud data from a geometric
optimization perspective. InSymp. Geometry Processing(2004).

[MSHS06] MARTINET A., SOLER C., HOLZSCHUCH N., SIL -
LION F.: Accurate detection of symmetries in 3d shapes.ACM
Trans. on Graphics 25, 2 (2006), 439 – 464.

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: Ridge-valley
lines on meshes via implicit surface fitting. InProc. Siggraph
(2004), pp. 609–612.

[PKG03] PAULY M., KEISER R., GROSS M.: Multi-scale fea-
ture extraction on point-sampled models. InProc. Eurographics
(2003).

[PMG∗05] PAULY M., M ITRA N., GIESEN J., GROSS M.,
GUIBAS L. J.: Example-based 3d scan completion. InProc.
Symp. Geometry Processing(2005).

[PMW∗08] PAULY M., M ITRA N. J., WALLNER J., POTTMANN

H., GUIBAS L.: Discovering structural regularity in 3D geome-
try. ACM Transactions on Graphics 27, 3 (2008).

[PSG∗06] PODOLAK J., SHILANE P., GOLOVINSKIY A.,
RUSINKIEWICZ S., FUNKHOUSER T.: A planar-reflective sym-
metry transform for 3D shapes.ACM Transactions on Graphics
(Proc. SIGGRAPH) 25, 3 (2006).

[RL01] RUSINKIEWICZ S., LEVOY M.: Efficient variants of the
ICP algorithm. InProc. 3rd Intl. Conf. 3D Digital Imaging and
Modeling(2001), pp. 145–152.

[SKS06] SIMARI P., KALOGERAKIS E., SINGH K.: Folding
meshes: hierarchical mesh segmentation based on planar symme-
try. In Proc. Symp. Geometry Processing(2006), pp. 111–119.

[SWWK08] SCHNABEL R., WESSELR., WAHL R., KLEIN R.:
Shape recognition in 3d point-clouds. InProc. Conf. in Central
Europe on Computer Graphics, Visualization and Computer Vi-
sion(2008).

[TW05] THRUN S., WEGBREIT B.: Shape from symmetry. In
Proc. Int. Conf. Computer Vision(2005).

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.

