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Abstract

In this thesis a general approach for detection of symmetric structures
in images is presented. Rather than relying on some feature points
to extract symmetries, symmetries are described using a probabilistic
formulation of image self-similarity. Using a Markov random field we
obtain a joint probability distribution describing all assignments of the
image to itself. Due to the high dimensionality of this joint distribu-
tion, we do not examine this distribution directly, but approximate its
marginals in order to gather information about the symmetries with
the image. In the case of perfect symmetries this approximation is done
using belief propagation. A novel variant of belief propagation is intro-
duced allowing for reliable approximations when dealing with approx-
imate symmetries. We apply our approach to several images ranging
from perfect synthetic symmetries to real-world scenarios, demonstrat-
ing the capabilities of probabilistic frameworks for symmetry detection.
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1 Introduction

“Symmetry is what we see at a glance”

Blaise Pascal (1623-1662)

mathematician, physicist, and philosopher

Symmetries and recurring parts are prevalent everywhere around us. They can be ob-
served in nature as well as in man-made objects such as architecture or arts. The ability
to recognize symmetric structures is a key-concept to understand the world surrounding
us. It is not surprising that the capability to detect symmetries efficiently can be very
useful for object recognition [26]. Furthermore, symmetry detection can be beneficial in
various other applications, such as compression, noise removal, shape completion, and
content variation.

Despite the ability of humans to perceive symmetries or symmetric structures instanta-
neously, automated discovery of such symmetries is a challenging task. Unsurprisingly a
lot of research in computer vision and computer graphics has been devoted to the task
of symmetry detection [1, 2, 6, 10,17,20–22,25,27,30–32].

Formally we understand symmetry as the invariance under rigid transformations and
mirroring. The symmetries considered in this thesis can be partial, approximative or
both. The aim of this thesis is to extract symmetries of a given image based on a
probabilistic formulation of image self-similarity rather than heuristics. Hence, no prior
knowledge of the symmetry such as shape, location, or number of repetitions is needed,
yielding a very general approach for symmetry detection.

The conceptual idea of our approach is illustrated in Figure 1.1. Inspired by the work
of Lasowski et al. [17], we use a Markov random field (MRF) to describe a probability
distribution over all possible matches of an image to itself (cf. Figures 1.1(a) - 1.1(c)).
The symmetries within the image are revealed by this joint probability distribution.
However, the probability space is of exponential size, making direct extraction of sym-
metries impractical. Fortunately, this distribution typically has only a few peaks, and
consequently, we can examine the distribution after projection to a smaller subspace.
We do this by computing marginal distributions of image points (cf. Figure 1.1(e)). The
marginal probabilities of a point are obtained by fixing candidate point matches and
summing the joint probabilities of all assignments containing the match. Hence, the
resulting marginal probabilities indicate whether the matched points constitute mating
points of symmetric parts. Given these marginal distributions, the actual symmetries
can be extracted by region growing (cf. [17]).

1
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(a) input image

Approach

(b) graph
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(d) query point
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Figure 1.1: Basic Idea. The input image is sampled twice, resulting in a set of variables or
nodes (b) and a set of labels (c). Each variable ranges over the set of labels.
The MRF describes a joint probability distribution over all possible assignments:
each variable should locally be well-described by the assigned label; the distance
between neighboring nodes, i.e. those connected by an edge in (b), should be
approximately retained by the labels. Marginal probabilities (d) are computed by
fixing one assignment and summing (marginalizing) over all other possibilities.
Marginal distributions are a good indicator for symmetric parts.

Since exact computation of marginals requires summation of an exponential amount of
terms, approximations have to be used. In the case of perfect symmetries, loopy belief
propagation yields good results. In order to obtain reliable results when dealing with
approximate symmetries, marginals of several spanning trees of the original underlying
graph (cf. Figure 1.1(b)) are taken into account.

In this thesis we will discuss how the symmetric structure of an image can be charac-
terized using an MRF. The marginals of the joint probability distribution described by
the MRF provide valuable evidence for symmetries in the image. Hence, we will focus
on retrieving good approximations to these marginal distributions.
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1.1 Related Work

A number of approaches for symmetry detection in images have been developed [6, 10,
20, 21, 30, 32]. Most of these approaches focus on certain types of symmetries, such as
rotational symmetries [6, 30], reflective symmetries [10,20], or both [21].
Cornelius and Loy [6] detect rotational symmetries under affine projections by using
feature pairs to predict possible centers of rotation. The centers are grouped to detect
dominant rotational symmetries. In [21] Loy and Eklund use ideas based on the Hough
transform in order to detect reflective and rotational symmetries in images. Gofman
and Kiryati [10] use a global optimization approach rather than enumeration to extract
all reflective symmetries. However this approach is limited to reflective symmetries.
In [32] Tuytelaars et al. consider a wider range of symmetries. By using invariant based
hashing and Hough transforms, regular repetitions of planar patterns, including period-
icities, can be detected. However, their approach can not handle rotations.

Symmetry detection within 3D objects has recently gained some attention in graphics
research [1, 2, 17, 22, 25, 27, 31]. As for images, many methods are based on transfor-
mation voting, e.g. [22, 27]. Mitra et al. [22] use pairs of points with similar shape
signature as evidence for potential symmetries. Clustering in transformation space is
employed to extract candidate symmetries, followed by a verifying step. A major draw-
back of transformation voting techniques is their restriction to transformations that can
be characterized by only few parameters. By using feature-based graph matching, Berner
et al. [2] circumvent this restriction. However, their method is sensitive to the quality
of the extracted feature lines.

This thesis is based on a more general approach to symmetry detection closely related
to the works of Lasowski et al. [17] and Anguelov et al. [1]. In [17] the authors use a
Markov random field model describing a probability distribution over all matches of a
shape to itself. The intrinsic symmetries are extracted by approximating the marginals
using loopy belief propagations, followed by peak tracking and region growing.

1.2 Organization

The remainder of this thesis is organized as follows. Chapter 2 and 3 provide short in-
troductions to graphical models, focusing on Markov random fields (MRFs), and loopy
belief propagation (LBP), respectively. Chapter 4 describes how the task of symmetry
detection can be formulated as an MRF, suggesting the use of LBP to approximate the
desired marginals. However, it will turn out that LBP only provides valuable approxi-
mations in case of perfect symmetries, as shown in chapter 5. The chapter proceeds to
consider variants of LBP to overcome this shortcoming and ends by proposing a novel
approach using spanning trees yielding better results. An evaluation and comparison of
both approaches is given in chapter 6. Chapter 7 concludes the thesis by providing an
outlook to some possible future work.
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Notations and Preliminary Remarks. In the scope of this thesis, Xi will denote a
random variable ranging over values xi ∈ Xi. We will write p(xi) instead of p(Xi = xi)
whenever the Xi is obvious from the context. For set S, XS denotes the set of random
variables {Xs|s ∈ S}, and xS = {xs|s ∈ S} denotes their corresponding values. The joint
probability distribution of a set of random variables XS = {Xs1 , . . . , Xsn} is written as
p(XS) = p(Xs1 , . . . , Xsn}. Bold letters represent vectors and subscripts refer to their
elements, i.e. p(x) = p(x1, . . . , xN ) = p(X1 = x1, . . . , XN = xN ).

For the sake of simplicity we will only consider discrete random variables; however,
the theoretical concepts introduced can also be generalized for continuous random vari-
ables.
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2 Graphical models

Graphical models [3,33] provide a concise and intuitive representation of joint probabil-
ity distributions. They describe the probabilistic relationship of random variables using
graphs. The nodes of the graph represent random variables, and the conditional indepen-
dence assumptions are described by the edges, or more precisely, by the absence of edges.
Figures 2.1, 2.2, and 2.3 show examples of different types of graphical models.

The two most common forms of graphical model are directed graphical models, usually
referred to as Bayesian networks [23, 28], or Belief networks, and undirected graphical
models, also known as Markov random fields [14, 23,33].

Although this thesis only involves undirected graphical networks, a short introduction
to the fundamentals of Bayesian networks is included for the sake of completeness. Fur-
thermore, a unifying representation for Bayesian networks and Markov random fields,
called factor graph [15, 23], is introduced in this chapter.

2.1 Bayesian Networks

A directed graph G = (V,A) is a pair of vertices (or nodes) V and arcs (or directed
edges) A ⊆ V ×V . We call G acyclic if there is no path from a vertex to itself, i.e. there
is no sequence s1, . . . , sk with (sk, s1) ∈ A and (si, si+1) ∈ A for i = 1, . . . , k − 1. For
vertex v ∈ V , let π(v) = {t|(t, v) ∈ A} denote the set of parents of this node.

A Bayesian network consist of a directed acyclic graph and a collection of conditional
probability distributions (pi)i∈V . Each vertex i of the graph represents a random variable
Xi ranging over values xi in some space Xi. The conditional probability distribution for
Xi given its parents Xπ(i) is given by pi and often represented by a conditional probability
table, as can be seen in Figure 2.1.

The joint probability distribution described by the Bayesian network is given by

p(x) =
∏
s∈V

ps(xs|xπ(s)) . (2.1)

Accordingly, the joint probability distribution for the Bayesian network depicted in Fig-
ure 2.1 is given by p(G,S,R) = p(G|S,R)p(S|R)p(R).

5



Rain
Cloudy T F

F 0.01 0.99
T 0.4 0.6 CR

S
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Rain Cloudy T F
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T F 0.3 0.7
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Cloudy
T F

0.5 0.5

Figure 2.1: Example of a Bayesian network describing the effect of weather on clothing.
Wearing shorts (S) is probably not a good idea when it is cloudy (C) and
raining (R). The later one is usually dependent on the presence of clouds.

2.2 Markov Random Fields

An undirected graph G = (V,E) is a pair of vertices V and a set of undirected edges
E ⊆ {{i, j}|i, j ∈ V, i 6= j}. Two vertices i and j are said to be adjacent, written i ∼ j,
if they are connected by an edge, i.e. {i, j} ∈ E. Let N (i) = {j|i ∼ j} denote the set of
neighbors (or neighborhood) of i.

A family of random variables (Xi)i∈V is said to form a Markov random field (MRF) with
respect to G = (V,E) if its joint probability is strictly positive and one of the equivalent
Markov properties holds, i.e. p(xi|xj , i 6= j) = p (xi|xj , j ∈ N (i)).

Unfortunately, there is no direct way to compute the joint probability distribution given
the conditional distribution [12]. The Hammerlsey-Clifford theorem [4, 11], however,
guarantees that the probability distribution will factorize into a product of clique po-
tentials.

2.2.1 Alternative Formulation

We call C ⊆ V a clique of G if its is fully connected, i.e. i ∼ j for all i, j ∈ C. Let C
denote the set of all cliques of graph G. A clique C is maximal if no more vertices can
be added to it, i.e. C is not a strict subset of any other clique.
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A Markov random field consists of an undirected graph G and a collection of distributions
(ψI)I∈C . Each i ∈ V represents a random variable taking values in Xi; each clique C is
associated with a potential function ψC : XC → R+ (also called compatibility function
or clique potential).

The joint probability distribution described by the MRF is given by

p(x) =
1
Z

∏
C∈C

ψC(xC) , (2.2)

where Z is a constant given by

Z =
∑
x

∏
C∈C

ψC(xC) (2.3)

ensuring correct normalization of the distribution. The set C can also be taken as the
set of maximal cliques, without the loss of generality.

Since the potential functions are strictly positive, they can also be expressed as

ψC = exp{−E(C)} ,

illustrating the relation to Gibbs distributions underlying the Hammerlsey-Clifford the-
orem [19].

2.2.2 Pairwise Markov Random Fields

Pairwise MRFs have been studied in statistical physics (Ising model [13]) and applied
to various computer vision problems [9]. In pairwise MRFs, we are usually given some
observed quantities yi for the nodes, e.g. the gray-value at the corresponding pixel. The
aim is to gain some knowledge about the underlying scene variables xi.

An example of a pairwise MRF is shown in Figure 2.2. The MRF is depicted using
two different representations: on the right, the observed quantities are drawn explicitly
(filled nodes), while they are omitted in the left representation.

In the case of pairwise MRFs we have two types of potential functions. The potential
function φi(xi, yi), often called evidence for xi, expresses the statistical dependency
between xi and yi, for each node i. The compatibility of neighboring variables is assessed
by the compatibility function ψij(xi, xj). The joint probability of the hidden scene and
the observations is given by

p(x,y) =
1
Z

∏
i

φi(xi, yi)
∏
i∼j

ψij(xi, xj). (2.4)

Considering the observed variables to be fixed, we can rewrite the joint probability of
the unknown variables as

p(x) =
1
Z

∏
i

φi(xi)
∏
i∼j

ψij(xi, xj). (2.5)

7



xi

yi

Figure 2.2: Square lattice pairwise MRF. The representation on the right explicitly repre-
sents the observed variable nodes, which are filled, while the hidden ones are
denoted by empty circles.

Please note that (2.5) is a special case of (2.2). Therefore, ψij should be read as ψ{i,j}
and accordingly ψij = ψji holds for all i ∼ j.

2.3 Factor Graphs

The factorization properties of undirected and directed graphical models (equations 2.1
and 2.2, respectively) lead to a unifying representation, called factor graphs.

Assume that g(x1, . . . , xn) factorizes into a product of local functions (or factors) (fI)I∈F :

g(x1, · · · , xn) =
∏
I∈F

fI(xNI ) , (2.6)

where NI is a subset of variable indices associated with factor index I, and fI takes the
elements of XNI as arguments.

A factor graph is a bipartite graph G = (V, F,E) that expresses the structure of a fac-
torization (2.6). A factor graph has a variable node i ∈ V for each variable xi, a factor
node I ∈ F for each local function fI , and an undirected edge {i, I} ∈ E connecting
variable node i and factor node I, if and only if, fI depends on xi, i.e. i ∈ NI .

Factor graphs equivalent to the graphical models given in Figures 2.1 and 2.2 are shown
in Figure 2.3. Variable nodes are represented by circles and factor nodes are denoted by
rectangles.

8



CR

S

p(S|C,R)

p(R|C) p(C)

Figure 2.3: Factor graphs corresponding to the Bayesian network and the MRF given in
Figures 2.1 and 2.2, respectively.

2.4 Conversion of Graphical Models

As already mentioned, both directed and undirected graphical models can be represented
by factor graphs (see Figure 2.3 for examples). For Bayesian networks, the factors
correspond to the conditional probability distributions. In the case of MRFs, the factors
directly relate to the clique potentials. Figure 2.4 illustrates the conversion of a pairwise
MRF into a factor graph.

We end this section by noting that arbitrary factor graphs can be converted into equi-
valent MRFs or directed graphical models, where the later is more involved [3,39]. Hence,
we can freely choose a representation without any loss of generality.

xi

φi

xj

φj

xk

φk

ψ{i,j} ψ{j,k}

xi xj xkψ{i,j} ψ{j,k}

φi φj φk

Figure 2.4: Conversion of a pairwise MRF into a factor graph.
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3 Inference in Markov Random Fields

As we have seen in the previous chapter, the joint probability distribution defined by a
pairwise MRF can be written as

p(x) =
1
Z

∏
i

φi(xi)
∏
i∼j

ψij(xi, xj) .

The normalizing constant Z is usually unknown. Furthermore, even if Z was known,
direct examination of this exponential sized distribution is typically not feasible. Thus
we rely on the marginals of the distribution, hinting at areas with high probabilities.
Marginals are obtained by summing the joint distribution over all variables except one.
Accordingly, the marginal probability distribution of Xi is given by

p(Xi = xi) =
∑
x1

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xN

p(x) . (3.1)

In the case of symmetries, a high marginal probability p(Xi = xi) indicates that the
points associated with the variable Xi and the assigned value xi are likely to be corre-
sponding points of symmetric parts.

In the scope of this thesis, inference will refer to the task of retrieving marginal prob-
abilities of random variables. Exact inference is often computationally infeasible and
approximations have to be used. A wide-spread approach for approximate inference is
belief propagation (BP) [3, 39]. Belief propagation has been independently developed
in different fields, such as statistical physics [24], error-correcting codes [8], or artificial
intelligence [29].

This chapter starts with exact inference on chains and trees, motivating the belief prop-
agation algorithm which can be applied to general graphs.

3.1 Exact Inference

In general, exact computation of (3.1) is intractable.1 Consider the case of an undirected
graphical network containing N discrete random variables Xi, each ranging over K
states. To compute the marginal distribution of a single variable Xi, KN operations are
necessary, KN−1 operations for each possible state of Xi.

1In [5] Copper proves that for Bayesian networks (strongly related to MRFs, cf. section 2.4), proba-
bilistic inference is NP-hard.
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However, this naive way of computing the marginal distribution does not take the condi-
tional independence structure into consideration. Taking the structure of the graph into
account, exact computation of marginal distributions becomes feasible for some types of
graphical models.

3.1.1 Inference on a Chain

x1 x2 xi−1 xi xi+1 xN−1 xN

Figure 3.1: MRF with N random variables Xi each ranging over |Xi| = K values.

Figure 3.1 shows a pairwise MRF based on a chain structured graph. Since this linear
graph contains no vertex with more than two neighbors, each variable associated to a
node of the graph can participate in at most two compatibility terms.

Accordingly, the joint probability distribution described by the MRF takes the form

p(x) =
1
Z
φ1(x1) . . . φN (xN ) · ψ1,2(x1, x2)ψ2,3(x2, x3) . . . ψN−1,N (xN−1, xN ).

For random variable Xi, the marginals are given by

p(xi) =
1
Z

∑
x1

∑
x2

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xN

φ1 . . . φN · ψ1,2ψ2,3 . . . ψN−1,N ,

where ψi,j and φi denote ψi,j(xi, xj) and φi(xi), respectively, for reasons of legibility.

By changing the order of summation and multiplication, this term can be rewritten as:

p(xi) =
1
Z
· φi ·

[∑
x1

∑
x2

· · ·
∑
xi−1

φ1 . . . φi−1 · ψ1,2ψ2,3 . . . ψi−1,i

]
[∑
xi+1

· · ·
∑
xN

φi+1 . . . φN · ψi,i+1 . . . ψN−1,N

]

=
1
Z
· φi ·

∑
xi−1

φi−1ψi−1,i . . .

[∑
x2

φ2ψ2,3

[∑
x1

φ1ψ1,2

]]
. . .


∑
xi+1

φi+1ψi,i+1 . . .

[∑
xN−1

φN−1ψN−2,N

[∑
xN

φNψN−1,N

]]
. . .
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Using this decomposition, we can reduce the computational effort from exponential in
N (for the naive approach) to linear in the number of vertices:

In order to compute
∑

x2
φ2ψ2,3

∑
x1
φ1ψ1,2, we first have to evaluate

∑
x1
φ1(x1)ψ1,2(x1, x2)

for every x2 ∈ X2, requiring |X2| · |X1| = K2 operations. The result is a K-dimensional
vector, which we will denote by m1→2. This vector is passed onto the next summation,
yielding

∑
x2
φ2(x2)ψ2,3(x2, x3) ·m1→2(x2). Since m1→2(x2) is a scalar factor, evaluation

of this sum again requires O(K2) steps. This scheme is continued untilmi−1→i is reached.
Analogously, mi+1→i is obtained, leading to a total cost of O(NK2) to compute

p(xi) =
1
Z
·φi·

[∑
xi−1

φi−1ψi−1,i . . .

[∑
x1

φ1ψ1,2︸ ︷︷ ︸
m1→2(x2)

]
. . .

︸ ︷︷ ︸
mi−1→i(xi)

][∑
xi+1

φi+1ψi,i+1 . . .

[∑
xN

φNψN−1,N︸ ︷︷ ︸
mN→N−1(xN−1)

]
. . .

︸ ︷︷ ︸
mi+1→i(xi)

]
.

The vectors mi→j are commonly called messages, since mi→j can be thought of a mes-
sage from node i to node j about what state j should be in.

Assuming that all variables range over the same set of values, i.e. Xj = Xi, we can
use the messages computed so far rather than performing the above computations sep-
arately for each variable.

E. g. consider the marginal distribution of Xi+1 = Xj :

p(xj) =
1
Z
ψj(xj)

[∑
xi

φi(xi)ψi,j(xi, xj) ·mi−1→i(xi)
]
·mj+1→j(xj)

This leads to an efficient, yet exact algorithm to compute all marginals of any chain
structured graph:

Given a chain-structured graph G = (V,E).
(W. l. o. g. V = {1, . . . , N}, E = {{i, i+ 1}|i = 1, . . . , N − 1})

1. start with computing m1→2, continue until mN−1→N is reached
2. analogously compute all opposite messages, starting with mN→N−1

Given all messages, we can calculate p(xj) for any Xj by

p(xj) =
1
Z
ψj(xj) ·m(j−1)→j(xj) ·m(j+1)→j(xj) ,

where m0→1 = mN+1→N = 1.
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x4

x7

x8 x9

x10

x5

x6
x3

x2

x1

Figure 3.2: A small tree-structured MRF.

3.1.2 Inference on Trees

A similar algorithm can be derived for cycle-free graphs. Consider the MRF based on
the tree-structured graph given in Figure 3.2. Again we can rewrite the marginals, e.g.
for X4, by changing the order of summation and multiplication.

p(x4) =
1
Z

∑
x1

· · ·
∑
x3

∑
x5

· · ·
∑
x10

φ1 . . . φ10ψ1,3ψ2,3ψ3,4ψ4,5ψ4,6ψ4,7ψ7,8ψ7,9ψ7,10

=
1
Z
· φ4 ·

[∑
x1

∑
x2

∑
x3

φ1φ2φ3ψ1,3ψ2,3ψ3,4

][∑
x5

φ5ψ4,5

][∑
x6

φ6ψ4,6

]
[∑
x7

∑
x8

∑
x9

∑
x10

φ7φ8φ9φ10ψ4,7ψ7,8ψ7,9ψ7,10

]

=
1
Z
· φ4 ·

[∑
x3

φ3ψ3,4

[∑
x1

φ1ψ1,3︸ ︷︷ ︸
m1→3

][∑
x2

φ2ψ2,3︸ ︷︷ ︸
m2→3

]
︸ ︷︷ ︸

m3→4

][∑
x5

φ5ψ4,5︸ ︷︷ ︸
m5→4

][∑
x6

φ6ψ4,6︸ ︷︷ ︸
m6→4

]

[∑
x7

φ7ψ4,7

[∑
x8

φ8ψ7,8

][∑
x9

φ9ψ7,9

][∑
x10

φ10ψ7,10

]
︸ ︷︷ ︸

m7→4

]

As in the previous case, we can reuse some of the messages calculated so far for computing
the marginal distribution of other variables:

p(x3) =
1
Z
·φ3(x3)·m1→3(x3)·m2→3(x3)·

[∑
x4

φ4(x4)ψ3,4(x3, x4)·m5→4(x4)·m6→4(x4)·m7→4(x4)
]

14



We can express these messages for an arbitrary cycle-free graph by

mi→j(xj) =
∑
xi

φi(xi)ψi,j(xi, xj)
∏

k∈Ni\j

mk→i(xi) , (3.2)

where Ni\j is a shorthand notation for N (i) \ j.

Using (3.2) we can algorithmically compute marginal probabilities for tree-structured
graphs.

Given an undirected graphical model without cycles
1. pick some node i to be the root of the tree
2. propagate messages, using (3.2), from the leaves to the root
3. propagate messages starting at the root to the leaves

Given all messages, the marginal probabilities can be computed by

p (xi) = 1
Z · φi (xi)

∏
j∈N (i)

mj→i (xi) . (3.3)

This scheme ensures that all incoming messages (mj→i) of variable node i have been
computed before any outgoing message (mi→j) is evaluated. Accordingly, each message
needs to be calculated exactly once to obtain all marginal distributions.

The propagation of messages in trees is illustrated in Figure 3.3.

2

1

3

4

5

6

m1→2(x2)

m2→1(x1)

m3→2(x2)

m2→3(x3)

m2→4(x4)

m4→2(x2)

m5→4(x4)

m4→5(x5)

m6→4(x4)

m4→6(x6)

Figure 3.3: Message passing on trees. First, messages are propagated inwards towards the
root (4), followed by outward propagation of messages.
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3.2 Belief Propagation

The algorithm defined by (3.2) and (3.3) is known as the sum-product algorithm or belief
propagation (BP). The messages are usually defined by recursive updates:

mi→j(xj)←
∑
xi

φi(xi)ψi,j(xi, xj)
∏

k∈Ni\j

mk→i(xi) (3.4)

Typically, the messages are updated in parallel, i.e. all updates are computed at once
using the messages of the previous iteration, but other schedules (e.g. serial) can be used
as well. 2

For parallel updates, (3.5) can be also written as:

mt
i→j(xj) =

∑
xi

φi(xi)ψi,j(xi, xj)
∏

k∈Ni\j

mt−1
k→i(xi) (3.5)

When using a parallel update schedule, the messages need to be initialized. Typically
uniform initialization is used:

m0
k→l(xl) = 1

|X | ,

for all messages mk→l and labels xl.

Once the updates have converged, the marginals can be calculated using equation 3.3.
For tree-structured graphs it can be shown [29] that the updates will converge, and that
the corresponding marginals given by (3.3) are indeed exact.

3.2.1 Loopy Belief Propagation

Although only guaranteed to converge on cycle-free graphs, BP may also be applied to
general graphs. The algorithm is then typically referred to as loopy belief propagation
(LBP) to emphasize its usage on graphs containing loops.

Since the computed marginals are only approximative, they are usually called beliefs.
The beliefs for node i are given by

b (xi) = k · φi (xi)
∏

j∈N (i)

mj→i (xi) , (3.6)

where k is a normalization constant, s.t.
∑

xi
b(xi) = 1.

When applying LBP to graphs containing cycles, it is not possible to compute all mes-
sages before they are needed to update another message (cyclic dependencies). Hence,
all messages need to be initialized - typically using uniform initialization.

2The schedule used in section 3.1.2 is a special case of a serial schedule.
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3.2.2 The Max-Product Algorithm

Replacing the sum in the update rule (3.5) by the maximum operator, the max-product
algorithm [33] is obtained. For chain-structured graphs, the algorithm is usually known
as the Viterbi algorithm [7].

The max-product algorithm computes (or approximates, in the case of cyclic graphs)
the max-marginals

νs(xs) = max
{x′|x′s=xs}

p(x1, . . . , xn)

of the distribution, which can be used to compute the mode of the distribution.
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4 Pairwise MRFs for Symmetry Detection
in Images

Given some gray-scale image, an MRF describing its symmetry structure is constructed
as shown in Figure 4.1. A set of nodes and a set of labels (Figures 4.1(b) and 4.1(c)
respectively) are sampled from the image. The MRF defines a probability distribution
over all possible assignments of the nodes to the labels. For a high probability of an
assignment the nodes should be locally well described by the assigned labels and neigh-
boring nodes, i.e. nodes connected by an edge, should behave geometrically consistently.
Global Symmetries

(a) input image

Approach

(b) graph

Approach

(c) labels

Figure 4.1: Construction of a MRF for symmetry detection.

A continuous gray-scale image can be represented by a mapping f : Ω → R, where
Ω ⊂ R2 is a rectangular domain, i.e. Ω = (0, a1) × (0, a2) [35]. In order to obtain a
digital image {fij |i = 0, . . . , N − 1; j = 0, . . . ,M − 1}, Ω is discretized by sampling and
the range is commonly quantized to {0, 1, . . . , 255} (for gray-scale images).

The single points (i, j) of the discretized image are called pixels. For pixel a = (i, j),
let ax and ay stand for i and j, respectively, and let fa denote the gray-value at this
position, i.e. fij .
The distance between two pixels a and b is given by d(a, b) = ((ax− bx)2 + (ay − by)2)

1
2 .

This chapter explains how the pairwise MRF is constructed, given an image of interest.
Some aspects specific to images, e.g. image boundaries, have to be considered when con-
structing the MRF. After pointing out the necessity to take these aspects into account,
possibilities to handle them adequately will be discussed.
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4.1 Underlying Graph

In order to construct an MRF for symmetry detection, we need to define the underlying
graph describing the conditional dependencies of the variables.

Given some image {fij |i = 0, . . . , N −1; j = 0, . . . ,M −1}, we sample the pixel positions
uniformly at a given sample distance sV to obtain the set of nodes

V ⊆
{

(i, j)
∣∣i = 0, . . . , N − 1; j = 0, . . . ,M − 1

}
.

The vertices are horizontally and vertically connected by edges:

E =
{

(i, j), (i+ sV , j)
∣∣(i, j), (i, j+ sV ) ∈ V

}
∪
{

(i, j), (i, j+ sV )
∣∣(i, j), (i+ sV , j) ∈ V

}
.

Accordingly, the graph underlying the MRF is given by G = (V,E).

4.1.1 Neighborhoods

Ideally, the neighborhoods of nodes should be defined such that non-rigid mappings of
the image are only possible, i.e. their joint probability is significantly larger than zero,
if the compatibility functions ψij allow for some flexibility. This is however not the case
if we use the neighborhoods as defined above.

Consider example 4.1 motivating the need for larger neighborhoods. Since the potential
functions are very strict, no variation in the distance between neighboring nodes nor in
the gray values associated with the node and the assigned label are tolerated. Therefore,
the joint probability should only be non-zero for x = (0, 1, . . . , 15). In particular the
marginal distribution of X0 should be zero for X0 6= 0.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

ψij(kl) =

{
1 d(i, j) = d(k, l)
0 else

φi(j) =

{
1 fi = fj

0 else

Example 4.1: Small example demonstrating the necessity for larger neighborhoods.
For simplicity, X and V are taken to be {0, . . . , 15}.
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But having a closer look at example 4.1 reveals:

p(X0 = 5) =
∑

x,x0=5

p(x) ≥ p(X0 = 5, X1 = 1, . . . , X15 = 15)

= 1
Z ·
[
φ0(5) ·

15∏
i=1

φi(i)
]
·
[
ψ0,1(5, 1)ψ0,4(5, 4)

∏
i∼j
i,j 6=0

ψi,j(i, j)
]

= 1
Z 6= 0

Intuitively, this is caused by folding the grid diagonally which keeps all distances between
neighboring vertices unchanged. This can be avoided by extending the neighborhood of
a vertex by including its diagonal grid neighbors (cf. Figure 4.2(a)).

When using diagonal neighbors, p(X0 = 5) is indeed zero. But still the desired marginal
distribution forX0 is not obtained, since the grid can still fold together horizontally:

p(X0 = 8) ≥ p(X0 = 8, X1 = 9, X2 = 10, X3 = 11, X4 = 4, . . . , X15 = 15)

= 1
Z ·
[
φ0(8)φ1(9)φ2(10), φ3(11) ·

15∏
i=4

φi(i)
]
·
[∏
i∼j

ψi,j(i, j)
]

= 1
Z ·
[
ψ0,1(8, 9)ψ0,4(8, 4)ψ0,5(8, 5) ·

∏
i∼j
i,j 6=0

ψi,j(i, j)
]

= · · · = 1
Z 6= 0 .

Adding additional horizontal and vertical neighbors (cf. Figure 4.2(b)) helps to circum-
vent this problem. When using the neighborhoods as depicted in Figure 4.2(c), the
desired joint distribution is obtained.1

The graphs corresponding to the extended neighborhoods introduced above are depicted
in Figure 4.2. Figure 4.3 clarifies the effect of using different neighborhoods in example
4.1 by providing experimental results using accordant settings.

(a) (b) (c)

Figure 4.2: Extended Neighborhoods.

1In this specific example the neighborhood of 4.2(b) already gives the desired results, since ψij does
not allow for any deviation of the distance. Usually, ψij allows for some deviations, cf. section 4.3.2,
making 4.2(c) necessary.
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input image

evidence (it 0)
it 1 it 2 it 10 it 100

Figure 4.3: Effect of extended neighborhoods. Beliefs drawn after transformation to [0, 1].
For details on representation of results please refer to chapter 6.
Beliefs for the marked point when using direct grid neighbors (1st row), addi-
tional diagonal neighbors (2nd row), and full extended neighborhood (3rd row).

In general, larger neighborhoods will lead to better results but will also cause an overhead
in computation time (cf. section 6.4). The trade-off between accuracy and computation
time has to be decided depending on the image under consideration. For instance, if
background regions are dominating the image a large neighborhood is advisable.

4.2 Random Variables

Each vertex i of the graph described in section 4.1 represents a random variable Xi

ranging over Xi. In this thesis, we will usually refer to the elements of Xi as labels.

For the means of symmetry detection in images, pixels of the image are related to each
other. Hence, the labels are sampled from the pixel positions of the image as well (recall,
the same was done for the vertices of the graph, cf. section 4.1). Furthermore, all random
variable Xi range over the same set of labels

X ⊆
{

(i, j)
∣∣i = 0, . . . , N − 1; j = 0, . . . ,M − 1

}
.

Typically, we sample X denser than V , i.e. |X | � |V |. This is not mandatory, but neces-
sary to reliably detect symmetries, in particular rotational symmetries. Some examples
in this thesis, however, will assume V = X in order to illustrate certain aspects more
clearly.
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4.3 Potentials

We have two types of potential functions: single potentials φi(xi), usually called evidence
for xi; and pairwise potentials ψij(xi, xj), referred to as compatibility functions.

4.3.1 Evidence

The evidence φi(xi) evaluates how well the pixel associated with node i is described by
the pixel corresponding to xi. Thus, descriptors are needed to characterize the image
locally around these pixels. To account for rotational symmetries the descriptors need
to be rotationally invariant up to some discretization error.

Let desc(x) be a function computing a local descriptor for the pixel corresponding to x.
Then, the evidence for xi is given by

φi(xi) = exp

(
−(desc(i)− desc(xi))2

σ2

)
. (4.1)

As a local descriptor we use a (approximately) Gaussian-weighted average of the neigh-
borhood of the pixel under consideration. This actually amounts to taking the local
gray-value after applying a low-pass filter with a Gaussian convolution kernel. Low-pass
filters smooth images by eliminating noise and unimportant small-scale details [35], help-
ing to reliably detect symmetries without getting “distracted” by the presence of noise.
Furthermore, using a Gaussian kernel ensures the required rotational invariance.

We use a binomial kernel (e.g. Figure 4.4) as a discrete approximation to the Gaussian.
The 5× 5 binomial kernel is given in Figure 4.4. The actual size of the kernel is a user-
defined parameter and should be adapted to the sampling distance, as well as to the
amount of noise present in the image. In order to compute descriptors for pixels close to
the boundary, the image is extended. Depending on the image under consideration, this
is done by constant extensions or by assuming periodic or reflecting image boundaries.

1
256
×

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

Figure 4.4: (5× 5) Binomial Kernel.
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4.3.2 Pairwise Potentials

The compatibility function ψij(xi, xj) assesses how well the distance between the nodes
is maintained by the labels and is given by

ψij (xi, xj) = exp

(
−(‖i, j‖2 − ‖xi, xj‖2)2

σ2

)
, (4.2)

where the amount of deviation tolerated is influenced by the parameter σ.

Global symmetries can be reliably described using these compatibility terms. However,
this does not hold for local symmetries. If an instance of a local symmetry is matched to
another instance, it is not possible to maintain all distances on the graph. Hence, either
many distance constraints are slightly violated or a few distances are not maintained
at all. In both cases the joint probability of the assignment will be neglectable, since
the product includes either many small terms or a few almost zero factors. Accordingly,
marginal probabilities corresponding to local symmetries will be almost zero, unless ψij
allows large discrepancies in the distance.

In order to detect local symmetries we need to accept solutions which are geometrically
consistent up to some global discontinuities. This is done by using truncation for the
pairwise potentials to obtain geometrically piecewise consistent solutions:

ψij (xi, xj) = max

{
exp

(
−(‖i, j‖2 − ‖xi, xj‖2)2

σ2

)
, ρ2

}
(4.3)

Using these modified compatibility functions, assignments with a few violations of the
geometric compatibility can still receive a relatively high probability.

Besides allowing for local symmetries, truncation also has a positive effect on computa-
tion time. Consider the following decomposition of (3.5):

mi→j (xj)←
∑
xi

φi (xi)ψij (xi, xj)
∏

k∈Ni\j

mki (xi)

←
∑
xi

φi (xi) ρ2
∏

k∈Ni\j

mk→i (xi) +
∑
xi

φi (xi)
(
ψij (xi, xj)− ρ2

) ∏
k∈Ni\j

mki (xi)

← ρ2
∑
xi

φi (xi)
∏

k∈Ni\j

mk→i (xi)︸ ︷︷ ︸
independent of xj

+
∑

xi :ψij>ρ2

φi (xi)
(
ψij (xi, xj)− ρ2

) ∏
k∈Ni\j

mki (xi)

The first summation of the decomposition is independent of the actual xj and hence
only needs to be computed once per message update. To obtain the individual elements
mi→j (xj) of the current message, we just need to sum over all of the labels xi that yield
a compatibility greater than ρ2.
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Furthermore, ψij only depends on the relative positions, i.e. ‖i, j‖ = ‖k, l‖ ⇒ ψij = ψkl.
Hence, the compatibilities can be precomputed for all distances between neighboring
nodes and only compatibilities greater than ρ2 need to be stored.

4.4 Image Boundaries

Even when using the extended neighborhood as described earlier in this chapter, the
joint probability, described by the MRF, might not characterize the symmetric struc-
ture as intended. As we will see, this is caused by insufficient treatment of image
boundaries.

Figure 4.5 provides an example with very pronounced boundary artifacts. The marginal
probabilities of the marked corner point are higher for points closer to the image center
than for the corners.

(a) (b) (c) (d) (e) (f)

Figure 4.5: A simple example exhibiting boundary artifacts: (a) input image, query point
marked, (b) evidence for marked point, (c) scaled beliefs after the first iteration,
(d) - (f) scaled beliefs after 5, 6, and 7 iterations, respectively.
Extended neighborhoods as in Figure 4.2(c); ψ; σ = 0.01, ρ = 0.

The cause for these boundary artifacts can be revealed by having a closer look at the
message update rule (3.5) and its decomposition:

mi→j(xj)← ρ2
∑
xi

φi (xi)
∏

k∈Ni\j

mk→i (xi)︸ ︷︷ ︸
mmini→j

+
∑

xi :ψij>ρ2

φi (xi)
(
ψij (xi, xj)− ρ2

) ∏
k∈Ni\j

mki (xi)

Due to truncation, mi→j(xj) will be at least mmin
i→j , independent of the actual value of

xj . Hence, the discriminative part of the message only depends on the sum over the
xi with ψij(xi, xj) > ρ2. In the following, we will call these labels the support of xj .
The dependency of the position of a label and its support is illustrated in Figure 4.6.
Since only labels within the support can add positively to mi→j(xj), labels with a larger
support are more likely to be “preferred” by the messages.

Similar boundary artifacts can be observed when no truncation is used, even though all
labels have full support. The sum of the ψij(xi, xj) over all labels xi is still smaller if
label xj is closer to the boundary, and therefore similar effects can be observed.
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(a) (b) (c)

Figure 4.6: Illustration of the support of labels. Support of a label in the middle of the
image (a), at the boundary (b), and at the corner (c).

4.4.1 Boundary Treatments

There are two principle approaches to tackle boundaries, either by adapting the grid or
by modifying the potentials. They differ in how they interpret image boundaries. The
first method interprets boundaries as features, while the second one assumes that the
image is just a part of a larger scene, i.e. it is continued beyond the boundaries.

4.4.1.1 Adaptation of the Grid

A simple, yet effective approach to avoid boundary artifacts is to add edges connecting
periodic neighbors to the graph, as shown in Figure 4.7.

In the case of “strict” pairwise potentials (small σ, ρ = 0), the success of periodical
neighbors is quite obvious. Due to the strictness of the potentials, the distance between
periodical neighbors must be approximately retained, forcing nodes close to the bound-
ary to relate only to labels close to the boundary.

Figure 4.7: Periodic Neighbors.
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Boundary artifacts are also avoided when the compatibility functions allow for variations
of the original distance (ρ > 0). In order for variables to take values leading to violations
of the distance, there must be some favorable local evidence making up for ρ2.

Figure 4.8 demonstrates the impact of periodic neighbors. The pairwise potentials are
chosen to be very strict. Hence, addition of periodic neighbors forces corner points to
be mapped to corner points only.

(a) (b) (c) (d)

Figure 4.8: Effect of periodic neighbors: (a) input image (query point marked), (b) evidence
for marked point, (c) scaled beliefs after the first iteration, (d) after 2 iteration.

4.4.1.2 Modification of Potentials

The principle idea is to modify the potential, such that the sum over the contributions
for all labels within the support is equal for all labels xj , i.e.

∑
xi
ψ̃ij (xi, xj) = k.

Intuitively, we try to predict how the image is continued beyond its boundaries.

There are different strategies to achieve this:

Uniform Scaling. The idea of uniform scaling is to give pairwise potentials for labels
closer to the boundary higher weights. These scaled potentials are given by

ψ̃ij (xi, xj) = αxjψij (xi, xj) ,

where αxj is a scalar factor depending on the label xj and is typically given by

αxj =
1∑

xi
ψij (xi, xj)

.

Using uniform scaling, all labels are geometrically equally preferred. However,
the symmetry property (ψij = ψji) of the pairwise potentials is usually lost when
scaling is used.

Mirroring. Rather than mirroring the labels directly, which would not solve the problem
since boundaries are just shifted, we modify the potentials to simulate mirroring.
This is done by adding ψij (xmi , xj) for all mirrored positions xmi of xi to ψij (xi, xj).
Hence, a label can be interpreted as a representative for all its mirrored positions.

27



(a) default distance (b) toroidal distance

Figure 4.9: Effect of toroidal distance on the support of a label.

Toroidal Distances. We can also modify the potentials by using a different distance
measure such as toroidal distances in the potentials.
Toroidal distances are given by

dtoroid(i, j) =
√

(gx(|i.x− j.x|))2 + (gy(|i.y − j.y|))2 ,

where gx(z) = min{z, (width+ 1)− z}, and gy(z) = min{z, (height+ 1)− z}.

Figure 4.9 provides a graphical depiction of toroidal distances and demonstrates
their influence on the support of labels. Intuitively, one can think of the image as
a toroid (except for the distortions). Thus, it makes sense to use toroidal distances
in combination with periodic neighbors.

In Figure 4.10 the marginals are computed using toroidal distance. The marginal prob-
ability is equal for all labels, since the toroidal distances allow the corner of the rigid
grid to be mapped to every label.

(a) (b) (c) (d)

Figure 4.10: Effect of toroidal distances: (a) input image (query point marked), (b) evidence
for marked point, (c) scaled beliefs after the first iteration, (d) after 2 iteration.

Please note that in the case of a completely white image, as shown above in Figure 4.10,
uniform scaling and mirroring yield the same results as well.
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5 Inference for Symmetry Detection

Given the MRF describing the joint distribution, we want to infer the marginals, which in
turn can be used to extract symmetries of the image under consideration (cf. [17]).

When applied to graphs containing loops, belief propagation is neither guaranteed to
converge, nor to compute good approximations of the marginals. Despite this fact,
belief propagation has been successfully applied in various previous applications [23]. So
we hope to obtain considerable approximations after a finite number of iterations. The
beliefs do not have to be accurate, but have to provide a reasonable basis for symmetry
extraction.

Indeed, LBP yields suitable marginals in the case of perfect symmetries. Non-synthetic
images, however, typically exhibit approximate symmetries due to sampling, noise, and
other means. Applying LBP to such approximate symmetries usually does not deliver
the expected results.

If LBP converges to a deficient solution, we call these beliefs pseudo marginals. An
example for pseudo marginals is shown in Figure 5.1. Similar effects can already be es-
tablished with much smaller images, helping to understand what causes the shortcomings
in the case of approximate symmetries.

In the remainder of this chapter we will consider a small example and compare the exact
marginals with their approximations obtained by LBP. Furthermore, we will discuss the
consequences of the findings and possible modifications of BP to overcome the problems.

input image
query point marked

evidence (it 0) it 3 it 10

Figure 5.1: Beliefs for an image exhibiting approximate symmetries.
Beliefs drawn scaled to [0,1]; ψ: σ=1.0, ρ=0.05; periodic neighbors
Image taken from the PSU Near-Regular Texture Database [18].
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5.1 A small Example

The MRF used in Figure 5.1 is rather complex, making direct examination impractical.
However, the problems arising can be reproduced using a smaller MRF. Example 5.1
exhibits similar behavior as Figure 5.1. The potential functions are designed such that
the exact marginals can be computed. Given the marginals, we can compare them to
the beliefs obtained with LBP.

p q

r s

0 5

255 255

ψij(kl) =

{
1 d(i, j) = d(k, l)
0 else

φi(j) =


1 fi = fj

0.9 |fi − fj | ≤ 10
0 else

Example 5.1: Example helping to elucidate the reasons of the shortcomings of LBP.
The sets V and X are taken to be {p, q, r, s}.

5.1.1 Exact Solution

Since in example 5.1 the set of nodes as well as the set of labels are both small, exact
computation of the marginals is possible. Due to the nature of the chosen compati-
bility functions, most of the 256 assignments have zero probability. Consequently, the
marginals can be computed by hand, as follows:

p(xq) =
∑

xp,xr,xs

p(xp, xq, xr, xs)

=
1
Z
·
∑

xp,xr,xs

φp(xp)φq(xq)φr(xr)φs(xs)ψpq(xp, xq)ψqs(xq, xs)ψsr(xs, xr)ψrp(xr, xp)

=
1
Z
·
[ ∑
xr,xs

φp(p)φq(xq)φr(xr)φs(xs)ψpq(p, xq)ψqs(xq, xs)ψsr(xs, xr)ψrp(xr, p)

+
∑
xr,xs

φp(q)φq(xq)φr(xr)φs(xs)ψpq(q, xq)ψqs(xq, xs)ψsr(xs, xr)ψrp(xr, q)
]

=
1
Z
·
[
φp(p)φq(xq)ψpq(p, xq)ψqs(xq, s) + φp(q)φq(xq)ψpq(q, xq)ψqs(xq, r)

]
,

where the partition function is given by Z = 1 + φp(q)φq(p).

Accordingly, the marginal distribution for Xq is given by

p(Xq = q) = 1
1+0.81 ≈ 0.5525, p(Xq = p) = 0.81

1+0.81 ≈ 0.4475, and p(Xq = r, s) = 0 .
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5.1.2 Beliefs

Having calculated the exact marginals, we can use them to evaluate the approximation
obtained with loopy belief propagation. In order to determine the fixed point of BP, we
first need to consider the message updates. Since the updating schedule only influences
convergence properties [23], a parallel schedule was chosen for the computations below.
By successively applying the message update rules, we get

mt
p→q(xq) =

∑
xp

[
φp (xp)ψp,q (xp, xq) ·mt−1

r→p(xp)
]

=
∑
xp

[
φp (xp)ψp,q (xp, xq) ·

∑
xr

[
φr (xr)ψr,p (xr, xp) ·mt−2

s→r(xr)
]]
,

where mt−2
s→r(xr) =

∑
xs

[
φs (xs)ψs,r (xs, xr) ·

∑
xq

[
φq (xq)ψq,s (xq, xs) ·mt−4

p→q(xq)
]]
.

When expanding the sum, we obtain

mt
p→q(xq) =φp(p)ψp,q(p, xq)φr(r)ψr,p(r, p)φs(s)ψs,r(s, r)φq(q)ψq,s(q, s) ·mt−4

p→q(xq)

+ φp(q)ψp,q(q, xq)φr(s)ψr,p(s, q)φs(r)ψs,r(r, s)φq(p)ψq,s(p, r) ·mt−4
p→q(xq)

= [ψp,q(p, xq) + ψp,q(q, xq)φp(q)φq(p)] ·mt−4
p→q(xq) = [φq(xq)]

2 ·mt−4
p→q(xq)

= [φq(xq)]
2·bt/4c ·m(t mod 4)

p→q (xq) .

Likewise, mt
s→q(xq) = [φq(xq)]

2 ·mt−4
s→q(xq) = [φq(xq)]

2·bt/4c ·m(t mod 4)
s→q (xq) .

Due to the loopy structure of the grid, messages depend on earlier versions of themselves.
As a consequence some of the evidence terms are over-used for the approximation of the
beliefs:

btq(xq) = k · [φq(xq)]2∗2·bt/4c+1 ·m(t mod 4)
p→q (xq) ·m(t mod 4)

s→q (xq) .

With increasing numbers of iterations higher powers of evidence terms are used to com-
pute the beliefs. Accordingly, the beliefs after 20 (4,16,40,100) iterations, assuming
uniform initialization, are given by

b20
q (q) = k · φq(q) · [φq(q)]20 ·m0

p→q(q) ·m0
s→q(q) = 1

1+0.921 ≈ 0.9

b4q(q) ≈ 0.629, b16
q (q) ≈ 0.857, b40

q (q) ≈ 0.987, and b100
q (q) ≈ 0.99998 .

When using large powers of evidence terms rather than the term itself, an initial pref-
erence (i.e. highest evidence) for a label is exaggerated more and more, yielding beliefs
with a single peak at that label.

Independent of the (strictly positive) initialization, the beliefs will always converge to-
wards these pseudo marginals. Using uniform initialization, the exact marginals are only
obtained after the first and second iteration:

b1q(q) = k · φq(q) ·
[
φp(p)m0

r→p(p) · φs(s)m0
r→s(s)

] 1
1 + φp(q)φq(p)

= b2q(q) = k · φq(q) ·
[
φp(p)φr(r)m0

s→r(r) · φs(s)φr(r)m0
p→r(r)

]
= p(Xq = q).
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5.2 Consequences for Symmetry Detection

The effects observed in the example above can be generalized for any graphs containing
multiple loops. After a few iterations it is almost impossible to tell whether some infor-
mation was already known before. Actual old information is mistakenly presumed to be
new, and as a consequence differences are amplified more and more with increasing num-
ber of iterations. Accordingly, the beliefs tend to have single peaks when the evidence
just slightly deviates which is almost compulsory for approximate symmetries.

Even though LBP performs well on perfect global symmetries, these findings have still
to be taken into account. If the set of labels is sub-sampled from the image, the image
is only approximated, and therefore the symmetries as well. Hence, every single pixel
position has to be in X in order for LBP to succeed on perfect symmetries.

5.3 Possible Workarounds

Before introducing the idea that helps to circumvent the problems caused by the loopy
structure of the graph, a short summary of other approaches taken into consideration is
given.

For small networks, like the one shown in the example, one could quantify the amount
of double counting and apply revision techniques as discussed in [36] to overcome the
problem. However, for images of reasonable size the graph will contain too many cycles
of different lengths.

One could also think of discretizing the evidence, but it is hard to tell how to do that
exactly without knowing the given image in detail.

Generalized belief propagation [38] yields better approximations on loopy graphs by
sending messages between groups of nodes. This requires to sum over several variables
at once, which is feasible if the variables range over only few values (in our setting, X is
usually large).

Tree-reweighted belief propagation [34] takes the opposing message as well as edge ap-
pearances into account. Furthermore, this approach has been successfully applied for
nonrigid image registration [16].

Tree-reweighted BP uses modified message update rule

mt+1
i→j(xj) =

∑
xi

φi(xi) [ψi,j(xi, xj)]
1
µji

∏
k∈Ni\j

[
mt
k→i(xi)

]µki[
mt
j→i(xi)

]1−µij ,

where µij is the edge appearance probability of {i, j} ∈ E(T ) over all spanning trees.

Unfortunately, this approach did not succeed in computing appropriate beliefs for the
example above (cf. Figure 5.4), and therefore, was not considered further.
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5.4 Approximation of Beliefs using Spanning Trees

Our goal is to obtain good approximations to the marginal distributions

p(xk) =
1
Z

∑
x′;x′k=xk

∏
i

φi(xi)
∏
i∼j

ψij(x′i, x
′
j) .

Unfortunately, the results obtained by standard LBP are not satisfactory when consid-
ering approximate symmetries. However, the first iterations of LBP are quite promising
when using a tree-based update schedule (i.e. only update messages along random trees).
See Figure 5.2 for an example.

input image
query point marked

evidence (it 0) it 1 it 2

Figure 5.2: Initial iterations when using a tree-based update schedule.

Let T = (V,ET ) be a spanning-tree of G = (V,E). Consider the MRF with T as the
underlying graph. The corresponding marginal distribution of Xk is given by

pT (xk) =
1
ZT

∑
x′;x′k=xk

∏
i

φi(xi) ·
∏

{i,j}∈ET

ψij(xi, xj) .

Recall that BP computes exact marginals on tree-structured graphs; and hence, we can
apply BP to compute pT (xk). Furthermore, BP can be used to compute ZT · pT (xk) =
p̃T (xk) if no normalization is employed.

Since ψij(xi, xj) ∈ [0, 1] and φi(xi) ≥ 0, we get:

p̃T (xk) =
∑

x′;x′k=xk

∏
i

φi(x′i) ·
∏

{i,j}∈ET

ψij(x′i, x
′
j)

≥
∑

x′;x′k=xk

∏
i

φi(x′i) ·
∏

{i,j}∈ET

ψij(x′i, x
′
j) ·

∏
{i,j}∈E\ET

ψij(x′i, x
′
j)

=
∑

x′;x′k=xk

∏
i

φi(x′i) ·
∏
{i,j}∈E

ψij(x′i, x
′
j) = Z · p(xk)

Thus, we can use the un-normalized marginals of spanning trees as sound over-approximations
for the actual un-normalized marginals of the graph. We will refer to beliefs approxi-
mated by spanning tree marginals as spanning tree beliefs.
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5.4.1 Minimal Spanning Tree Beliefs Approach

When approximating marginals by using a spanning tree, we simply “forget” some com-
patibility terms (corresponding to the deleted edges). In case of good compatibilities
(i.e. ψij(xi, xj) ≈ 1), this has hardly any effect on the result. However, when discarding
low compatibilities some marginal probabilities get over-approximated. We can inter-
pret the edges corresponding to these low compatibilities ψij(xi, xj) as a contradiction
to the respective assignments (Xi = xi, Xj = xj). Thus, we hope to find a spanning tree
containing most of these contradictory edges.

Consider example 5.2. We wish to approximate the marginal distribution of the red
marked variable. Using the spanning tree shown in (b), the marginal probability for the
green and blue labels are approximated insufficiently. Spanning trees (c) and (e) yield
good approximations for the green label. Proper approximations for the blue label are
obtained when using (d) or (e). Please note that in more complex cases a “perfect”
spanning tree, like (e), yielding good results for all labels might not always exist; hence,
we use individual spanning trees for each label.

(a) (b) (c) (d) (e)

Example 5.2: Example illustrating the concept of contradictory edges. When assigning the
blue label to the red node, the blue edge in (d) and (e) yields a contradiction
(low probability of this assignment). Analogously for green.

Algorithm 5.1: Minimal Spanning Tree Beliefs Algorithm

Input: MRF with G = (V,E); number N of spanning trees
1. initialize beliefs: b(xk)← 1
2. for i = 0 to N do
3. randomly pick spanning tree Ti of G
4. calculate un-normalized beliefs b̃Ti(xk)
5. for all Xk, xk ∈ X do
6. b(xk)← min{b(xk), b̃Ti(xk)}
7. end for
8. end for
9. normalize beliefs
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These observations can be used to derive a new strategy for the approximation of
marginals. The basic idea is sketched in Algorithm 5.1. For a set of N spanning trees
{Ti}i∈N , all corresponding un-normalized marginals are computed. For each variable
and each label of the original graph, the un-normalized belief is given by the minimum
over all respective beliefs:

b(xk) = l ·min
i∈N

{
pTi
}
,

where l is a normalizing constant.

Since the beliefs are approximated by the minimum over a set of spanning tree beliefs,
we refer to this strategy as the minimal spanning tree belief (MSTB) approach.

An example for an application of the MSTB Algorithm is given in Figure 5.3.

input image
query point marked

evidence (it 0) it 10

Figure 5.3: Beliefs obtained by the MSTB approach.

We conclude this chapter by returning to the small example considered in section 5.1.
Approximations obtained using different approaches are compared in Figure 5.4. Only
the beliefs calculated by the MSTB approach capture the marginals sufficiently.

input image

evidence it 1 it 4 it 10 it 100

Figure 5.4: Comparison of different methods for approximation of marginal distributions.
first row: LBP (parallel schedule); second row: TRW-LBP; third row: MSTB.
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6 Results and Discussion

For purpose of evaluation, both versions of the approach were applied to a set of test
images ranging from synthetic images to real photographs. Except for some small bitmap
images, all pictures were taken from the PSU Near-Regular Texture Database [18] and
converted to gray-value images.1

Given the beliefs of variable node Xi, we represent the beliefs by adapting the saturation
(in HSV color space) of the associated pixels accordingly. The saturation of the pixel
corresponding to xi is given by

255 · b(xi) .

For pixels not contained in the set of labels, the saturation is determined by linear
interpolation between labels in close proximity. A strong belief (b(xi) ≈ 1) is represented
by a saturated blue, while pixels with low beliefs are drawn white.

Since the beliefs are approximations to marginal distributions, they must sum up to one.
Hence, for reasonably sized sets of labels, the beliefs are typically very small, resulting
in almost white images. Thus, the beliefs need to be transformed before visualization.
This can be achieved by gamma correction [35] or by mapping to the unit interval.

Using gamma correction, the saturation for pixel xi is given by

255 · [b(xi)]
1
γ ,

where γ typically takes values between 2 and 5, depending on the number of labels.
For γ > 1, gamma correction is a concave mapping, spreading smaller values while
compressing larger ones. In Figure 6.1 [b(xi)]

1/γ is plotted for different values of gamma.
Thus, gamma correction can be used to uncover small-scale details. However, γ needs
to be chosen appropriately depending on the image under consideration. Furthermore,
the actual differences between beliefs get distorted when using gamma correction.

Let bmin= min
xi∈X

and bmax=max
xi∈X

be the smallest and largest belief of Xi.

We map the interval [bmin, bmax] to the unit interval [0, 1] by mapping b(xi) to:

b(xi)− bmin
bmax − bmin

.

Given the rare case that bmin = bmax, we set every belief b(xi) to 1.
1The approach is not restricted to gray-value images in general, but to handle color images appropriate

descriptors are needed.
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Figure 6.1: Gamma correction.

Typically, this simple transformation suffices to make the beliefs visually perceptible
without adjusting an additional parameter. Furthermore, all relative differences between
the beliefs are preserved by this mapping.

Hence, if not noted otherwise, the beliefs will be presented after transformation to the
unit interval.

6.1 Perfect Symmetries

To asses the quality of approximations obtained, we will first regard simple perfect
symmetries allowing to predict the actual marginals.

Consider the perfect global symmetry given in Figure 6.2. When using very strict com-
patibility functions, LBP as well as the MSTB approach compute beliefs agreeing with
the actual marginals.

input image evidence
it 1 it 10

LBP
it 1 it 10

MSTB

Figure 6.2: Example exhibiting perfect, global symmetries. Both variants agree on their
beliefs. ψ: σ=0.01; ρ=0; extended neighborhood; periodic neighbors.
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The MRF used in Figure 6.2 only allows for rigid mappings of the grid. However, using
such an MRF already assumes that the image under consideration contains perfect global
symmetries. Furthermore, when considering a completely rigid grid the marginals can
be computed exactly since most assignments have zero probability. Accordingly, there
is no need for approximations of the marginals.

When not using prior knowledge, and accordingly, compatibility functions allowing for
more flexibility, the approximation techniques should still be able to recognize the sym-
metric structure of the image. Using a less strict compatibility function should result
in four high peaks corresponding to the actual instances of the point, as well as some
smaller peaks in close proximity to these points. Beliefs obtained using such a compati-
bility function are shown in Figure 6.3. The beliefs computed by LBP are more localized
than the expected marginal distribution, while the beliefs obtained by the MSTB ap-
proach are much less localized.

input image evidence
it 1 it 10

LBP
it 1 it 10

MSTB

Figure 6.3: Example exhibiting perfect, global symmetries. Using a compatibility function
allowing for more flexibility: σ=0.2; ρ=0.1

Since not all compatibilities terms are considered when using spanning trees to approx-
imate the beliefs, discontinuities of the geometric consistency are much “cheaper” than
actually modeled by the MRF. Consequently, marginals approximated using the MSTB
approach tend to be less localized than specified.

Even though LBP does not approximate the marginals correctly, the approach still
captures all symmetric structures within the image. However, when considering local
symmetries, the reason underlying these very localized beliefs leads useless beliefs.

The beliefs computed by LBP shown in Figure 6.4 converge towards pseudo marginals
even though all pixels of the image are used as labels (in order to introduce no approx-
imation by sampling). The pairwise potential do no allow for variations in the local
structure (σ=0.01), however, for some global discontinuities (ρ=0.1). Accordingly, one
would expect beliefs similar to those obtained after 20 iterations in Figure 6.4.

The reasoning used to explain the cause of these artifacts is very similar to the one used in
chapter 5. Due to the loopy structure of the underlying graph, the messages also depend
on earlier versions of themselves. This does not only lead to double counting of some
evidence terms (as seen in chapter 5), but also to over-usage of compatibility terms.
It might be interesting to note that the beliefs did not converge towards the identity
mapping in Figure 6.4, but to some other symmetric instance of the point.
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input image evidence

it 1 it 3 it 5

it 8 it 10 it 12

it 15 it 18 it 20

it 23 it 25 it 30

Figure 6.4: Perfect, local symmetries. The beliefs computed by LBP converge to pseudo
marginals. The left panel of each iteration shows beliefs after applying gamma
correction (γ=3). Compatibility functions: σ:0.01; ρ:0.1; periodic neighbors.

Figure 6.5 shows the results received when using the MSTB algorithm rather than LBP.
However, when using the settings as in Figure 6.4, the beliefs are not very localized.
Due to missing some compatibilities when approximating the belief by spanning trees,
truncation becomes more likely (some of the ρ2 are simply left out in the computation).
Using a smaller truncation parameter helps to compensate for this effect to some extend
by making geometric discontinuities less preferred (see Figure 6.5, right frames).
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input evidence it 10 it 2 it 10 it 50

Figure 6.5: Perfect, local symmetries. Beliefs obtained using the MSTB approach. Beliefs
shown in the middle are computed using the same setting as in Figure 6.4. The
three frames on the right were calculated using less truncation: ρ=0.01.

6.2 Approximate Symmetries in Synthetic Scenes

Next, we will evaluate the performance of the approach on images containing symmetries
which only slightly deviate from perfect symmetries.

Figure 6.6 provides another example of typical pseudo marginals obtained when using
LBP on approximate symmetries. Using the MSTB approach rather than LBP in case
of approximate symmetries yields much better results, as shown in Figure 6.7.

input image evidence

it 1 it 2 it 3

it 4 it 5 it 6

Figure 6.6: Image containing a global approximate symmetry. Pseudo marginals given by
LBP. Left panels after gamma correction, γ=4. ψ: σ:0.4; ρ:0.01
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input evidence it 5 it 50

Figure 6.7: Image containing a global approximate symmetry. MSTB approach used.

Considering the beliefs after different numbers of iterations of the MSTB approach (given
in Figure 6.8), two aspects typical for this approach can be observed:

1. Many iterations of the MSTB algorithm do not yield a better approximation.

2. Sometimes the beliefs seem to get worse, e.g. it 10 compared to 13.

The first aspect is caused by the naive sampling of spanning trees. By just drawing a
random sample, there is no guaranty that this spanning tree will contribute to a better
approximation of the beliefs. While the second is just a matter of representation. The
MSTB approach tries to minimize the un-normalized versions of the beliefs. Whenever
a spanning tree yields better (smaller) approximations for some of the un-normalized
beliefs, their total sum is decreased as well. Accordingly, the normalized versions of
beliefs that have not been updated are larger than before even though the approximation
has been improved.

Figure 6.9: Picture exhibiting approximate symmetries. Beliefs after 25 iterations using the
MSTB approach (row 3) for different query points (row 1).
Evidence as shown in row 2; compatibility functions: σ=0.2; ρ=0.01.
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input image

evidence

it 1 it 2 it 10

it 13 it 15 it 17

it 19 it 20 it 24

it 29 it 30 it 100

Figure 6.8: Image exhibiting approximate symmetries. Several iterations of the MSTB ap-
proach depicted. Left panels: γ=3.3. Compatibility functions: σ=0.05; ρ=0.01.
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6.3 Approximate Symmetries in Real-World Images

Finally we turn to symmetric structures in real-world images. Figures 6.9-6.11 provide
examples of application of the MSTB approach to real photographs in increasing order of
difficulty. As in the previous examples, the beliefs tend to be more flexible than the actual
marginals. However, our goal is to obtain beliefs providing good evidence for potential
symmetries rather than calculating perfect approximations to the marginals

In the scope this thesis we only focused on obtaining suitable approximations to the
marginals. The next step is to extract the actual symmetries as described by Lasowski et
al. in [17]. When extracting symmetries based on (approximated) marginal distributions,
peaks of the marginal distribution of some variable are used as seeds. The regions are
grown if the marginals of neighboring variable nodes agree with these peaks (i.e. distance
of nodes is approximately maintained by a pair of peaks).

Hence, in order for this extraction to succeed, it suffices if the beliefs for some nodes are
properly localized. Examples for fairly well localized beliefs can be observed in Figure
6.9 (middle) or Figure 6.10 (in both panels on the right).

Figure 6.10: Approximate symmetries with different degrees of similarity. Using 50 iterations
of the MSTB algorithm to approximate the marginals. 1st row: query points,
2nd row: evidence, 3rd row: beliefs. Compatibility functions: σ=0.2; ρ=0.01.

Even though the picture shown in Figure 6.11 contains perspective skew, the different
regions of the flowers are roughly recognized. The correct marginals would only point
at symmetries with similar size. Hence, when considering images with perspective skew,
the (unwanted) flexibility of the approximation can turn out to be beneficial.
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input evidence it 10 it 50

Figure 6.11: Photograph containing symmetric structures under perspective skew.
50 MSTB iterations used. ψ: σ=0.01; ρ=0.01.

6.4 Computation Times

We end this chapter by having a look at the time needed to compute beliefs. All times
were measured on a 3.16GHz machine with 7.87GB of RAM using a C++ implementation
of the approach without any further optimizations.

Tables 6.1-6.3 show the effect of the different parameters on computation time. The
MSTB approach is typically two times faster than ordinary LBP.

When using larger neighborhoods or more nodes, the time needed by LBP scales with
approximately the same factor since the number of messages is increased (cf. table 6.1).
For the MSTB approach, only the size of the variable nodes has a significant influence
on computation time.

Increasing the number of labels, increases the computation time needed drastically as
shown in table 6.2. Hence, the number of labels used is currently a limiting factor of our
approach. Please note that although table 6.2 uses no truncation, not all pairs of labels
are considered in the current implementation since compatibilities less than 10−30 are
discarded (assumed to be zero).

Table 6.3 illustrates the effect of σ and ρ on computation time. Increasing σ and/or
decreasing ρ requires longer computation times.
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|N | |V | |X | MSTB LBP
≤ 16 256 1024 21.234s 109.28s
≤ 8 256 1024 18.390s 66.265s
≤ 4 256 1024 16.218s 30.656s
≤ 4 64 1024 5.204s 8.782s
≤ 4 16 1024 1.781s 2.906s

Table 6.1: Effect of the numbers of messages on computation time.
σ=1.0; ρ=0.1

|V | |X | MSTB LBP
64 64 0.140s 0.312s
64 256 0.799s 1.329s
64 1024 8.782s 15.203s
64 4096 232.186s 371.95s

Table 6.2: Effect of the numbers of labels on computation time.
|N | ≤ 4; σ=1.0; ρ=0

σ ρ MSTB LBP
0.1 0.1 48.253s 90.063s
1.0 0.1 55.219s 106.624s
1.0 0.01 62.015s 119.078s
1.0 0 162.735s 317.140s
10.0 0.1 845.489s 1533.85s

Table 6.3: Effect of σ and ρ on computation time.
|N | ≤ 4; |V |=|X |=1024
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7 Conclusion

In this thesis we have presented a general approach to symmetry detection in images.
Using a Markov random field (MRF), we model a joint probability describing the self-
similarity of the image. The MRF uses a graph to depict the variables which should
behave geometrically consistently. In order to extract locations of potential symmetries
from this joint probability distribution, we refer to the marginals of its variables.

The first version of the approach uses loopy belief propagation (LBP) to obtain approxi-
mations of the marginals. As we have seen, LBP only provides sufficient approximations
when considering perfect symmetries. Due to the very loopy structure of the graph
used by the MRF, LBP tends to exaggerate initial preferences for certain values of the
variables when applied to approximate symmetries.

Motivated by the shortcomings of LBP, we developed a novel variant of belief propaga-
tion: the minimal spanning tree beliefs (MSTB) approach. By calculating approxima-
tions based on spanning trees of the original graph, the MSTB approach bypasses the
problems encountered by LBP.

Even though the marginals can not always be reliably approximated, we were able to
demonstrate that a simple probabilistic description of similarity can be used for symme-
try detection.

7.1 Future Work

As we have seen in the previous chapter, a major drawback of the approach proposed in
this thesis is the required computational effort limiting the practicability of the approach.
Thus, an implementation on graphics hardware could help to accelerate computations
making the approach more applicable to real-world imaged. In addition, both versions of
the approach are memory intensive. For every variable node the corresponding messages
and beliefs, each containing an entry for every label, have to be stored. Using a more
sparse representation of messages and beliefs could help to reduce the required memory
and at the same time accelerate computations.

Even though the results obtained by the MSTB approach are typically superior to those
acquired by using LBP, there is still room for improvement in this approach.

Currently the spanning trees used in the MSTB algorithm are randomly sampled from
the space of all spanning trees. This naive sampling also yields spanning trees not
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contributing to a better approximation of the marginals. Consequently, there is no
inherent stopping criteria for this approach. In order to make some assumptions about
convergence, it might be necessary to keep track of the spanning trees used in prior
iterations. Furthermore, the spanning trees typically allow for much more flexibility,
and hence, approximated marginals are typically not as localized as intended. Requiring
that at least one spanning tree contains all edges directly connected to the variable
node of interest, might already help to obtain better results. One could also think of
ways to group edges, (similar to [37] where nodes are grouped) and ensure that each
spanning tree contains at least one representative of each group. Hence, future work in
these directions would consider different strategies to draw samples from the space of all
spanning trees.

However, in order to obtain significantly better approximations, other approaches for
computation of marginal distributions need to be considered.
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