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Abstract

Loopy belief propagation (LBP) is a powerful tool
for approximate inference in Markov random fields
(MRFs). However, for problems with large state
spaces, the runtime costs are often prohibitively high.
In this paper, we present a new LBP algorithm that
represents all beliefs, marginals, and messages in a
wavelet representation, which can encode the probabilis-
tic information much more compactly. Unlike previous
work, our algorithm operates solely in the wavelet do-
main. This yields an output-sensitive algorithm where
the running time depends mostly on the information
content rather than discretization resolution. We apply
the new technique to typical problems with large state
spaces such as image matching and wide-baseline opti-
cal flow where we observe a significantly improved scal-
ing behavior with discretization resolution. For large
problems, the new technique is significantly faster than
even an optimized spatial domain implementation.

1. Introduction

Loopy belief propagation (LBP) [1] is a widely used
technique for approximate inference in Markov ran-
dom fields (MRFs). Although there are in the general
case no strict guarantees of convergence (which can
be fixed [1]) and optimality, belief propagation often
yields very good approximations in practical computer
vision problems such as stereo reconstruction [2, 3], op-
tical flow [3], or correspondence computations [4]. The
generality of the algorithm is particularly appealing:
Unlike other approximate inference techniques, LBP is
mostly independent of the structure of the Markov ran-
dom field and the probabilistic potentials used in the
model. The algorithm can be applied to graphs with
general clique sizes, arbitrary potentials, and general
label sets. For n random variables that each can be
in k different states (or labels) with potentials of or-
der (clique size) c, each iteration of the basic algorithm

needs Θ(nkc) running time. For large state spaces,
this is often prohibitively large, even in the case of
pairwise MRFs (c=2). This is particularly unfavor-
able for MRFs with continuous states. Such MRFs are
frequently used in application such as shape and image
matching, where labels for example represent positions
in a 2D image. Representing such distributions accu-
rately with a grid of discrete bins often leads to high
costs despite coarse resolutions.

However, the marginal distributions within the al-
gorithm typically show a lot of coherence so that a full
histogram representation is wasteful. For example, in
image matching applications, we obtain sharply peaked
initial beliefs at salient features and rather uniform,
uninformative beliefs within uniformly colored regions.
The LBP algorithm then distributes this knowledge un-
der some regularizer. This successively creates more
peaked believes until only a few final sharp peaks are
left. Fig. 1 shows such typical marginal distribution
before and after belief propagation is applied. In this
paper, we are examining a more compact representa-
tion of marginals, which leads to a novel belief propa-
gation algorithm that scales better to state spaces dis-
cretized at a high resolution. Instead of the original
histograms, we operate in a space of linearly trans-
formed histograms. A natural choice for the basis of
such a message-passing space is a wavelet basis because
wavelets are able to efficiently encode both low fre-
quency distributions, referring to high uncertainty, as
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Figure 1: Marginal distributions in an optical flow application
of loopy belief propagation (for a point on the right hand of the
subject). Typical marginals are usually sparse and consist of
some smooth regions with a few salient peaks.
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well as sharply peaked distributions. Uncertain knowl-
edge is easily captured by a few low frequency wavelet
coefficients. On the contrary, a Dirac delta pulse repre-
sented at resolution O(ε) can be encoded with O(log 1

ε )
coefficients. Because of the linearity of the transform,
mixtures of such cases can also be handled.

In order to work with this representation, there is
a major technical obstacle: While the transformation
and compression of individual messages and beliefs into
the wavelet domain is straightforward, the message
passing algorithm itself cannot be easily formulated in
the wavelet domain. A straightforward solution would
be to transform back to the spatial domain at each
message passing step, which would void the compu-
tational advantages of the encoding. The other ob-
vious alternative is using n-ary wavelet products for
message evaluation, which in a näıve implementation
leads to exponential costs with respect to n. Our algo-
rithm employs recent results on efficient evaluation of
n-ary wavelet product integrals [5, 6] in order to per-
form the direct algebraic product evaluation in linear
rather than exponential time. Furthermore, each mes-
sage passing step requires an integration over pairwise
potential functions that weight the incoming messages.
Here, we develop a wavelet-space encoding and a hier-
archical scheduling scheme for the computations that
can perform this step efficiently. Furthermore, we will
show that we can formulate a resolution independent
version of LBP that does not require any a priori dis-
cretization of the domain.

For evaluation, we apply the algorithm to image
matching and optical flow tasks that require large label
spaces. We compare our implementation to a simple
histogram-based implementation of LBP as well as an
optimized version with pruning. The observed scaling
behavior of our new technique is significantly better
than that of both spatial domain algorithms: Compu-
tational costs grow significantly weaker with discretiza-
tion resolution, and for large label spaces, the new al-
gorithm outperforms the spatial domain implementa-
tions.

2. Related Work

Compression techniques have already been applied
to LBP to improve space and/or time complexity. Yu
et al. [7] investigate PCA and an envelope transform
for the compression in a 1D domain. The technique
achieves good results but cannot be applied directly
in the compression domain. Zhao et al. [8] compress
the messages in the wavelet domain however each time
the message is uncompressed when arriving at the node
and compressed when going out. Minka [9] describe ex-
pectation propagation, a variant of LBP for potential

functions belonging to exponential families allowing
for continuous state spaces in this case. Felzenszwalb
et al. [3] describe linear and near-linear time message
passing algorithms for restricted types of pairwise po-
tentials. Additionally the authors show a speed up of
message update computation by FFT-based fast convo-
lution for shift invariant potentials. Our method does
not have restrictions on potentials. Furthermore, our
method is completely independent of discretization res-
olution, which is imposible with the FFT-based algo-
rithm which relies on regularly sampled domains. Ko-
modakis et al. [10] propose dynamic pruning of states
of low probability. However, this approach cannot han-
dle smeared out uncertainty, but would distort such
distributions by removing the uncertainty information
altogether. Sudderth et al. [11] introduce nonpara-
metric belief propagation (NBP) that represents mes-
sages by samples. Fitting of Gaussian mixture models
and Gibbs sampling is used for message propagation.
This reconstruction from sampling leads to numerical
smoothing, adding artificial uncertainty in each prop-
agation step. For large graphs, this impacts precision
(the paper only discusses results in the range of 5 × 5
nodes). Our wavelet representation is more restrictive
with respect to the domain of the state space (restric-
tion to hypercubes in low dimensions). However, we
obtain good results even for large graphical models
with many random variables and very high PSNR. A
restricted NBP for Gaussian potential functions is pre-
sented in [12]. Han et al. [13] employ mean-shift to es-
timate the mode and weight for the outgoing message,
but this neglects uncertainty information. Following
this line, Parks et. al [14] discretize the continuous
state space into a grid and use only local samples to
perform mean-shift on the marginals. In contrast to
these approaches, we are aiming at representing the
full distribution, not just the main modes.

3. Wavelet Belief Propagation

3.1. Standard Belief Propagation
We assume that we are given a MRF consisting of n

random variables xi, with i = 1..n and mutual con-
ditional independence encoded in a graphical model
G = (V,E), V = 1..n, E ⊆ V ×V . Each variable is as-
sumed to have a continuous, d-dimensional state space
Ω = [0, 1]d ⊆ Rd. The layout of G can be arbitrary.
Furthermore, we assume that the probability distribu-
tion factors into singleton node potentials φi (“data
terms”) and pairwise edge potentials ψij (“compatibil-
ity terms”):

p(x1, ..,xn) =
1

Z

∏
i=1..n

φi(xi)
∏
i,j∈E

ψij(xi,xj), (1)



where Z is a normalization constant. Our goal is to
approximate the marginal distributions

p(xi) =

∫
· · ·
∫

x1···xn∈Ω
j 6=i

p(x1, ..,xn)dx1...dxn. (2)

Loopy belief propagation approximates the marginal
distributions p(xi) for each random variable by assign-
ing a message mij to each edge in the graph and up-
dates these iteratively by the following rule [1]:

mij (xj) =

∫
xi∈Ω

Ψij (xi,xj) Φi (xi)
∏

k∈Ni\j

mki (xi)

 dxi

(3)

where Ni denotes the set of direct neighbors of node i
in G. The belief function fi of node i is given by:

fi (xi) =
1

Z
Φi (xi)

∏
k∈Ni\j

mki (xi) (4)

Belief propagation initializes all believes by the single-
ton potentials Φi and then iteratively passes messages
in the graph until convergence. The final approxima-
tions to the marginals p(xi) are the beliefs at each node.

3.2. Wavelet representation
Our goal is now to perform this algorithm com-

pletely in the wavelet domain. We therefore use a
wavelet basis B = {b1, ..., bN} with N = (2k)d, k ∈ N,
i.e., the resolution in each dimension is a power of
two. In this paper, we will use a Haar wavelet ba-
sis in “non-standard” decomposition (for more details
on wavelets, see for example [15]). This restriction is
necessary because for this basis, efficient algorithms
for computing products of wavelet encoded signals are
known [5, 6]. The non-standard Haar basis consists
of one constant scaling function b1, covering the whole
domain, as well as wavelets that describe local differ-
ences at different scales. The basis functions together
form a d-dimensional quadtree. The basis is orthonor-
mal and all functions except from b1 integrate to zero
over Ω. We now express all marginal distributions that
show up in the LBP algorithm as linear combinations
of wavelet functions:

mij (x) =

N∑
p=1

λmij
p bp (x) (5)

Φi (x) =

N∑
p=1

λΦi
p bp (x) (6)

Ψij (x,y) =

N∑
p=1

N∑
q=1

λΨij
pq bpq(x,y). (7)

In the following, we will use just λmij , λΦi , and λΨij ,
without the indices p, q, to denote the complete vector
of wavelet coefficients. Before we go on, Eq. 7 needs
some more attention: since Ψ is a 2 · d-dimensional
function we therefor cannot use the same basis as for
the other, d-dimensional functions. At this point, we
opt for a tensor product construction bpq(xi,xj) :=
bp(xi) · bq(xj). For the 1D-case, this yields a stan-
dard decomposition Haar wavelet basis, and for higher
dimensions, we obtain functions that are non-standard
shaped restricted to the first and last d dimensions, and
standard shaped for combinations of these dimensions.
Choosing the tensor product basis at this point facili-
tates the computation of the message passing integral,
as we will see in the next step. We now plug this rep-
resentation into the message passing equation 3. After
simple algebraic reordering, we obtain:

mij (y) =
∑
q

bq (y)

[
N∑
p=1

λΨij
pq

∫
x∈Ω

bp (x)Rij(x)

]
(8)

with

Rij(x) :=

(
N∑

r=1

λΦi
r br (x)

) ∏
k∈Ni\j

(
N∑
l=1

λ
mki
l bl (x)

)
dx.

(9)

As we see, due to our tensor product basis representa-
tion of the Ψij , we can split the basis functions bpq into
two parts and directly obtain a wavelet representation
for the new message mij . The coefficients of the ba-
sis are given by the expression in square brackets. We
now deal with this expression in two steps: First, we
evaluate the products in the term Rij(x) (Eq. 9) using
the n-ary wavelet product integral algorithm of Sun et
al. [6]. In a second step, we perform the outer summa-
tion. We show that this step corresponds to a matrix
vector product and provide an adaptive approximation
algorithm for this step.

3.3. Wavelet Product Integrals
The term Rij(x) is a product of functions repre-

sented in the same wavelet basis B. Algebraically, this
is a product of #Ni sums of up to N terms each. As-
suming that r of them are non-zero, a näıve expansion
of this product would result in O

(
r#Ni

)
terms, expo-

nential in the degree of G. Clearly, this is not accept-
able.

Recently, there has been considerable interest in
computing such products of wavelet-represented func-
tions in the field of three-dimensional rendering, where
integrals of products of transformed functions occur for
example in lighting computations. Ng et al. [5] provide
a fast solution for triple product integrals, which has
been extended to general products by Sun et al. [6].



In both cases, a non-standard Haar wavelet basis is
used. The key observation is that the functions are or-
thogonal and have only limited support. Due to the
quadtree-structure of the basis functions, only direct
and indirect descendant nodes can cause non-zero con-
tributions in a pointwise multiplication, and the in-
tegral over most combinations is still zero. Based on
these observations, Sun et al. [6] construct an algorithm
that can evaluate the product of m wavelet-represented
functions with at most r non-zero coefficients each in
time O(r ·m).

We now use their wavelet product algorithm to com-
pute the coefficients of the function Rij(x). Because we
will always be looking at a fixed message passing step
from node i to j, we will in the following omit the in-
dices i, j to simplify the exposition. The wavelet prod-
uct algorithm builds explicit hierarchies (d-dimensional
quadtrees) to represent each term in the product and
then incrementally merges these trees by a simultane-
ous hierarchical traversal. The output of the algorithm
is a quadtree hierarchy that stores all non-zero wavelet
basis coefficients for the product. We denote these by
λR =

(
λR1 , ..., λ

R
N

)
. For further details of the wavelet

product algorithm, see [6].
Next, we deal with the integral in Eq. 8: The in-

tegration over bp(x) multiplied with R(x) is actually
easy to evaluate [6]. As B is an orthonormal basis,
this integral just outputs the coefficient with index p
from the wavelet tree of R. In the follwoing, we will
write the wavelet coefficients of Ψ as an N × N ma-
trix ΛΨ :=

[
λΨ
pq

]
p,q

. In this notation, the summation

in square brackets in Eq. 8 reduces to a dot product
of the wavelet coefficients λR and the q-th column of
ΛΨ. Including the outer sum yields the matrix-vector
product:

λm = ΛΨλR, (10)

Our task is now to evaluate this product efficiently,
which we will address in the next subsection.

3.4. Adaptive Approximate Summation
A näıve multiplication leads to O(N2) running time,

identical to the standard algorithm. To speed up, we
make use of the special structure of this data. Both
the input vector λR and the output vector λm con-
sist of wavelet coefficients structured as d-dimensional
quadtrees. The support of the associated basis func-
tions is strictly hierarchically nested. We use this prop-
erty to compute hierarchical bounds on contribution of
subtrees within r and ΛΨ. For r, this is easy: In linear
time, we can compute the sum of squared coefficients
within the subtree of each node.

Next, we determine hierarchical bounds on ΛΨ. Be-
cause of the tensor product construction, the structure

is a bit more complex: The compatibility potentials Ψ
are 2 · d-dimensional objects. For example, in the case
of a 2D state space, the Ψ are 4D functions. Each coef-
ficient in the wavelet representation describes the cou-
pling of a 2D square in the input and another 2D square
in the output domain. A node na is contained in an-
other node nb if and only if both input squares of na are
contained in those of nb. The same holds for the cor-
responding hyper-squares in arbitrary dimension. This
defines a hierarchy, which we use for pruning. The
actual bounds are easy to obtain if we know the differ-
ence between maximum and minimum absolute values
of Ψ within this domain. No wavelet coefficient can be
larger in absolute values than this bound scaled with
area and the normalization constant of the wavelet ba-
sis.

Using the hierarchical bounds on ΛΨ and λR, we
can now evaluate the vector-matrix product efficiently.
Fig. 2 shows the key steps. The blue tree represents
the output tree for m, which is empty in the beginning.
The orange colored tree encodes the input r. An edge
connecting nodes of both trees represents a product
operation λm → λm + λΨ

pq · λRp . We now try to restrict
ourselves to the most important interactions by using a
priority queue to schedule the most interesting regions
of interaction first. For each link, we set the priority
to the upper bound of the square-integral error that
we would incur if we leave out this whole subtree of
computation. This error is estimated by multiplying
the upper bound on corresponding region in the domain
of Ψ with the upper bound of the corresponding region
in the domain of R.

In the first step (Fig. 2(a)) of our tree scheduling
algorithm, the roots of both trees are connected with a
link of infinite cost. This represents a product between
the root of λR and the complete output tree λm. We
now iteratively pick the most important pair from the
queue, which is the pair with the largest upper bound
on the potential error. We perform the multiplication
for this pair and store the result. Next, all link com-
binations between the children of both nodes are put
on the queue (Fig. 2(b)). Additionally (Fig. 2(c)) links
between every child node and pair nodes are built. For
these links, we mark the parent nodes as fixed, which
enforces that the iteration will never subdivide these
nodes but keep the connection to the fixed parent node.
These links correspond to asymetric combinations of
hyper-squares of different size, which form nested side
hierarchies, not contained in the symmetric nodes re-
sulting from the symmetric subdivision (see Fig. 2(d)).

The stopping criterion is the relative l2 error of the
current estimate: While building the message, we can
keep track of its current square integral norm. At the
same time, we can track the amount of potential error
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Figure 2: Illustration of the adaptive matrix vector product. Trees on the left (blue) are outputs, trees on the right (orange) are input.
(a) Initial link on the priority queue. (b) After processing a link, new connections are added. (c) Additionally, “fixed” links between
nodes and their counterpart’s children added. (d) Matrix interpretation: Colors indicate the corresponding cases of (a) - (c). Due to
illustration purpose we omitted the scaling coefficient λΨ

0 .

left in the priority queue by keeping track of the sum of
the bounds. If the ratio is smaller than a user specified
constant (and not less than a constant minimum num-
ber of allowable operations has been performed yet),
the iteration is ended1.

The tree based message update algorithm presented
here is independent on the domain resolution. Solution
gathering is stopped if either there is no more input
summands given or the desired signal approximation is
reached. Therefore, we can work with an unbounded
potential number N of wavelet coefficients and let the
algorithm automatically choose a representation that
in each step is accurate up to a fixed l2 error bound.
In other words, the algorithm adaptively determines a
hierarchical discretization on the fly rather than fixing
it upfront. This automatic adaptation cannot be ob-
tained with traditional algorithms that work on fixed
grids. Non-parametric sampling methods [11] are res-
olution independent by design but available methods
cannot guarantee strict error bounds.

For moderately sized state spaces, this property
might not be necessary so that we can simplify our algo-
rithm by performing the priority queue-driven schedule
for each row of the matrix-vector multiplication instead
of globally. We have implemented this as an alterna-
tive. As we will see in Section 4, the scaling behavior is
not as good but the constants in the runtime are quite
a bit lower because the access to a sparse data struc-
ture storing the result coefficients is avoided (the fully
adaptive version uses a hash table to store coefficients
while the row-wise version can use a simple array).

3.5. Conversion to the Wavelet Domain
The algorithm described above relies on the avail-

ability of certain information about the Φi and the Ψij .
So far, we have formulated this as an abstract oracle;
now we propose different implementations. The first

1Our current practical implementation actually uses a simpler
absolute error threshold.

type of information is the wavelet transform of these
functions. Because the Haar-basis {bp}p (as well as the
tensor-product basis {bpq}p,q) is orthogonal, the trans-
formation is given by just an inner product between
the input function and a basis function. Because of the
simple, piecewise constant form of the basis, this can be
reduced to a sum of a small number of integrals over
the input function. The second type of information
we need are lower and upper bounds for Ψij : For two
quadtree-aligned squares X ,Y, we need to be able to
bound the minimum and maximum value of Ψij(x,y)
for x ∈ X ,y ∈ Y.

We have evaluated two variants how to do this in
practice: First, we have discretized all (different) Φi
and Ψij on a regular 2K × 2K grid for fixed K and
precomputed both the bounds as well as the wavelet
transforms using a simple fast-wavelet transform as de-
scribed in [15]. For large K, this is not feasible any-
more. In particular, the size of the Ψ-table becomes
too large because of the quadratic growth. For pair-
wise compatibility functions Ψ that are symmetric and
stationary with respect to x or y, the space can be re-
duced from Θ(N2) to Θ(N) for each table by exploiting
this redundancy. However, a resolution free operation
is not possible in this way.

In this case, we have to use analytic computations:
We omit all precomputed tables and perform an ana-
lytic integration and bounding at runtime, on demand.
This is possible for many classes of functions Ψ (di-
rectly or through a piecewise Taylor approximation)
but requires additional manual effort. In addition, run-
time costs are higher than for precomputation.

4. Evaluation and Applications

4.1. Applications
We evaluate our method with two standard applica-

tions of LBP that typically require large state spaces:
deformable image matching and wide-baseline optical
flow [16, 17, 18]. In both cases, we are operating on
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Figure 3: Left : Reference solution. Right : PSNR for the same
percentage of coefficients, comparing LBP with simple binning
(“spatial”) and a wavelet LBP algorithm.

a two-dimensional domain Ω. As data term Φ, we
use Fourier descriptors [19] (compressed by PCA) that
characterize local image content in a rotationally in-
variant way. The compatibility function Ψ differs for
the two applications:

Deformable image matching: Here, we aim at
preserving distances along the edges of the graph G,
with increasing penalty for larger deviations. In other
words, we are trying to keep the matching “as-rigid-as-
possible”:

Ψdef
ij (xi, xj) = max

(
e−β(Ds(i,j)−Dt(xi,xj))2

, ρ
)

(11)

Ds(i, j) and Dt(xi, xj) are Euclidean distance between
source and target point pairs, β determines how easily
deformable the model is, and ρ is a truncation param-
eter that allows for discontinuities in the solution to
make the matching robust.

Optical flow: Here, we use a regularizer that
imposes a non-rotational invariant smoothness con-
straint [17]:

ΨFd
ij (a, b) = max

(
e−β(|ax−bx+dx|+|ay−by+dy|), ρ

)
(12)

(ax, a,y ), (bx, by) are the displacement vectors and
(dx, dy) is one of the four stationary vectors
(1, 0)T , (−1, 0)T , (0, 1)T , (0,−1)T , depending on cur-
rent direction of the message propagation in the MRF
graph, respectively. In order to favour parallel dis-
placement vectors we move the highest response of the
smoothness potential by the vectors equal to the dis-
placement of the MRF nodes, which is encoded by the
stationary vector (dx, dy).

4.2. Baseline methods
We compare our approach with standard loopy be-

lief propagation (LBP) as well with an optimized ver-
sion, which we call pruned belief propagation (PBP).
Pruned belief propagation employs a simple but very
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WBP analytic 70dB

Figure 4: Execution time of one belief propagation iteration for
different number of labels, 162 = 256 to 1282 = 16384 labels.
The number of nodes in the MRF is constant. Both axes of
the diagram are logarithmic. Wavelet belief propagation scales
differently and thus outperforms the spatial domain implemen-
tations for large state spaces.

effective optimization: Many pairwise compatibility
potentials Ψ are rather sparse. For a fixed y, Ψ(x,y)
is typically non-constant only for a small area A ⊆ Ω.
In this case, we can restrict the evaluation of the in-
tegral in Eq. 3 to A. To account for the integral over
constant Ψ, we compute the unweighted integral of Φ
over A and compute the integral over A as comple-
ment to the integral over Ω, at no extra costs. Then,
we weight this value with the constant value Ψ attains
in A. In practice, this easy to implement optimization
typically leads to large speedups. Therefore, it should
be included for a fair comparison.

The comparison with WBP is based on PSNR (peak
signal to noise ratio) where the corresponding mean-
squered-eror (MSE) is a sum of quadratic differences
between belief vectors in wavelet domain and spatial
domain.

4.3. Results
Image matching: Our first test is performing

as-rigid-as-possible image matching on a strongly de-
formed example image. We use the first and fourth
frame of the teddy image sequence [21] and addition-
ally deformed the fourth frame by applying a spatial
“wave” filter. In this example, we use precomputed
wavelet decompositions and row-based approximative
summation (Sec. 3.4). Fig. 5 shows the visual results.
We are able to obtain a more than threefold speedup
with WBP (1.25 hours), over the optimized PBP (4.8
hours), implementation at a PSNR of 95dB. The base-
line standard LBP implementation would have used
(estimated) 1200 hours for the same data set.

Optical flow: Our second test is optical flow, ap-



(a) source with G (b) data term Φ

(c) target image (d) correspondences

Figure 5: Teddy data set for the image matching experiment. (a)
Source image; the 292 = 841 nodes of G are shown as white dots.
State space: 2562 = 65536 labels, i.e. 128 × 128 resolution with
half-pixel accuracy. (b) Fourier data term for the point on the
teddy’s belly marked in red. (c) Target image, created by apply-
ing a “wave” filter image distortion filter. Marked points indicate
the correspondences. (d) Visualization of the correspondences.

(a) warped (b) PBP flow (c) WBP flow

Figure 6: BeanBag data set [20]. (a) Warped image of flow
computed with WBP. The MRF graph consists of 1024 nodes.
On the target side we incorporate subpixel accuracy, by defining
a label set of 16384 labels. (b) Flow computed with pruned BP
in around 12 hours. (c) Flow computed with wavelet BP in 1.5
hours, the PSNR is 70dB.

plied to the BeanBag data set from the Middlebury
database [20]. The displacement in this experiment
are in the range of 10-20% of the image size, which is a
good test case for large displacment optical flow. Fig. 6
shows the warped source to target image and corre-
sponding optical flow. The color encoded displacement
vectors computed with standard belief propagation are
shown in Fig. 6(b) and those computed with wavelet
belief propagation in Fig. 6(c). Please note that our
PSNR error is computed over all belief vectors ~m rather
then the maximum label likelehood as shown in the re-
sulting figures.

Comparison against downsampling: We have
also performed an experiment for a 1D case (a
1D Markov chain with a 1D intervall as state space)
where the exact solution can be computed exactly. We
run wavelet and standard BP at different resolutions to
study how the error scales with the retained informa-
tion. Our analytical example uses a Φ that is a Dirac

(a) source with MRF and target (b) flow (c) warp

Figure 7: Synthetic example for time complexity evaluation. (a)
Source and target images. The MRF consists of 256 nodes. (b)
Flow fields computed with WBP at 70dB (top) and with PBP
(bottom) at 4096 nodes and 4096 labels. The computation is
7min and 56min for WBP and PBP respectively. (c) Warped
image computed with WBP at 70dB (top) and difference image
to the source (bottom).

impulse for the first node and a constant function for
all nodes i 6= 0. The regularizer consists of a Gaussian
blur with a slight upward shift. The reference solu-
tion is computed with 1024 states. Fig. 3 shows the
error for the same number of coefficients used in the
state space. The accuracy of the wavelet approxima-
tion drops much more gracefully; the PSNR is between
two to four orders of magnitude better than that for
simple downsampling.

Scaling behavior: We study one more wide-
baseline optical flow example on a synthetic “lady bug”
data set (see Fig. 7). We vary the resolution of the
discretization domain and compare the running times
of standard LBP, pruned PBP, and wavelet BP. We
use wavelet BP at 70dB and 100dB PSNR, compared
against the final results of the reference LBP solution.
For 70dB, we use both the precomputed and the ana-
lytical computation of the wavelet transform of Ψ, all
other cases are precomputed. We also test the simpli-
fied row-based summation (Sec. 3.4), where very small
entries in the precomputed table for Ψ are statically
prunned by 1e-15, i.e. floating point accuracy; the
method is therefore referred to as “WBP pruned”) and
achieves a PSNR of more than 110dB.

Fig. 4 shows the running times for one iteration of
belief propagation. As expected, the spatial domain
implementations all scale quadratically (confirmed by
a slope of 2 in the log-log plot). The row-based summa-
tion is very fast in absolute numbers, but scales slightly
super-linearly (empirical slope 1.3). The full WPB im-
plementations have the largest constant overhead fac-
tor (due to the more involved data structures), but
show the best scaling behavior.

5. Conclusions

In this paper, we have introduced a new algorithm
that performs sum-product belief propagation directly
in a wavelet transformed representation. It represents
all messages as sparse linear combination of wavelet



basis functions, which typically yields a much more
concise representation than traditional histograms of
labels. Our technique is general and applicable to
pairwise MRFs of arbitrary topology (general graph-
ical models) with general potential functions. Unlike
previous work our algorithm performs all operations in
the wavelet domain only, thereby only requiring com-
putational costs dependent on the information content
in this decorrelated representation rather than on the
spatial resolution. In practice, we obtain a significantly
better scaling behavior, however, at the price of a larger
overhead (larger constant factor in the runtime). In
absolute time, wavelet belief propagation outperforms
even our optimized spatial domain base-line implemen-
tation for medium to large state spaces (depending on
the chosen summation algorithm).

Limitations and future work: Our technique has
a number of limitations. Probably the most important
one is the larger constant in the runtime due to the
more involved data structures. For small state spaces,
the method does not offer advantages. So far, we have
to leave low-level optimizations of the algorithm for
future work. The usage of wavelets also limits the do-
main of the state space; we need to be able to define
an orthogonal Haar-basis on this domain. So far, we
have only looked at square domains, but generaliza-
tions may be possible. Another limitation is the use of
sum-product belief propagation; the max-product algo-
rithm cannot be supported. Finally, for very high and
unlimtited (purely adaptive) resolutions, some integral
properties and bounds of Ψ must be derived analyti-
cally. A hybrid, partially precomputed technique with
caching might reduce these issues. In terms of applica-
tions, we would also like to look at application domains
where LBP has not been used, or only in restricted
form due to the high computational costs, such as tex-
ture synthesis and shape matching. Finally, it would
be interesting to investigate the usage for higher or-
der potentials, where the wavelet representation might
offer a different way to reduce computational costs.
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