Hardware Accelerated Multi-Resolution
Geometry Synthesis

Martin Bokeloh
* WSI/GRIS, University of Tlbingen

Abstract

In this paper, we propose a new technique for hardvacceler-
ated multi-resolution geometry synthesis. The |efaletail for a
given viewpoint is created on-the-fly, allowing fan almost
unlimited model resolution in rendering without egsive mem-
ory usage. The models consist of regularly sampéetingular
patches that are subdivided hierarchically by agmmmmable
shader in order to create different levels of nesoh. The ap-
proach is inherently parallel and lends itself moimplementation
on vector processor-like parallel architectures. Wéenonstrate
this property by an implementation on programmaipiaphics
hardware. This implementation shows a substangdopmance
benefit over a CPU-based implementation by up teentiban an
order of magnitude. We apply the framework to reimdge of

smooth surfaces and to rendering of complexly sired fractal
landscapes using a novel multi-channel fractal sugidn tech-

nique. Due to the hardware acceleration, it is ipts$o perform
interactive editing and walkthroughs of such scenesal-time.

Categoriesand Subject Descriptors: 1.3.3 [Computer Graphics]:
Picture Image Generation — Display Algorithms; 1.3.6 [Cortgyu
Graphics]: Methodology and Techniques — Graphita diauc-
tures and data types.

Keywords: multi-resolution modeling, games and GPUs, graph-
ics hardware, large data sets

1 INTRODUCTION

In the last 10 years, computer graphics has expegtba dramatic
increase in performance of rendering hardware. &€oporary
graphics coprocessors (GPUs) are capable of pliagessveral
hundred million primitives per second, allowing taighly com-
plex geometry to be displayed in real-time. Giviea tapabilities
for sophisticated rendering of complex content,itaaithl atten-
tion has to be paid to the problem of modeling clempscenes
and the coupling of the modeling and the rendepingess.

In terms of effort for a human modeler, it is vally impossi-
ble to create complex geometries by editing on mppenitive
basis. Consequentlyprocedural modelingtechniques are fre-
quently used to create detailed 3d models. Sudinigees allow
(generally speaking) the control of a more comgermetry by
only a few parameters to a modeling algorithm. Tgrieperty is
usually calleddata amplificationin computer graphics literature.

* martinbokeloh@gmx.net
° mwand@stanford.edu

[7 ACM, 2006. This is the author’s version of the kvdr is posted here
by permission of ACM for your personal use. Notréatistribution. The
definitive version will be published in the Procieegs of the Symposium
on Interactive 3D Graphics and Games 2006.

Michael Wand
° Computer Graphics Laboratory, Stanford University

Procedural techniques range from spline surfacesoimplex
fractal models, which provide a varying degree atadamplifica-
tion. An important advantage of procedural modeliechniques
is memory efficiency: By storing only the paramstdor the
procedural model instead of the generated setahggic primi-
tives, memory requirements can be drastically reduRendering
primitives (triangles, micro-polygons, ray sampleints) are
generated on-the-fly, during rendering. A furthenéfit is level
of detail control: For many procedural renderinghtgques, the
number of primitives being generated for rendeiag be easily
adapted to the current requirements (such as thepaint), re-
sulting in a significant reduction of rendering &m

Although being commonly used in offline renderirsgé€ e.g.
[Cook et al. 87]), procedural generation of geognitronly rarely
used in interactive graphics. Most often, triangheshes are
precomputed and transferred to the graphics baardehdering.
Only surface shading is commonly performed by pdocal
techniques (and in hardware), as this is direatlypsrted by the
architecture of current GPUs. In cases where a morepact
procedural description of geometry is availablés tauses avoid-
able storage and bandwidth problems. Ideally, treduation of
the procedural model should be performed on-theaflyendering
time. For current PC hardware, this means that g&gmsynthesis
should be performed by the GPU, avoiding the badttwand
processing bottlenecks of the main CPU. For othehitectures
(such as the upcoming multi-core game console t&atires), a
similar processing model, enabling the usage oérs\computa-
tional hardware units in parallel, is also desieabl

In this paper, we propose a new approach for halaecel-
erated geometry synthesis. It employs a restrigtetitree subdi-
vision of rectangular, regularly sampled patchestesponding to
different levels-of-detail of an object. Higher obgion patches
are created by subdividing lower resolution patéhesfour; new
points are functions of fixed neighborhoods of tleeresponding
lower resolution points. Multiple attribute chammalre employed
to represent additional information to guide thbdivision proc-
ess. The subdivision routine, which accounts forstmof the
computational demands of the algorithm, can be emehted
using a single instruction stream on large amowftslata in
parallel so that it can be executed very efficiedty a vector-
processor style parallel architecture. We demotesthee perform-
ance benefits of this approach by implementing dlgorithm
using the pixel shaders of current GPUs, resuiting speedup of
up to more than an order of magnitude in comparisoa CPU
implementation. The proposed framework is veryilike, allow-
ing for applications ranging from simple smoothfaces to com-
plex landscape models.

The proposed technique combines several well-knalgo-
rithmic building blocks. Our main contribution is @mposite
modeling architecture that can be implemented ieffity on
parallel graphics hardware and is still flexibleoegh to create
complexly structured models. Efficient execution parallel
hardware is achieved by the usage of a fixed sigidiv kernel
for all data points. However, a problem with thgpeoach is the
stationarity of the subdivision rule, leading to dets where dif-
ferent parts have similar geometric characterisi¢te main idea

to overcome these limitations is the usage of migtattributes
per data point. The additional attribute channedsesmeta infor-
mation (such as surface roughness or vegetatiositgieto con-
trol the subdivision process, which themselves atered by
higher level subdivision steps. This results in enfbexibility and
variability in the synthesized model. We apply tm®deling
approach to the synthesis of complexly structumedtél land-
scapes. Due to the hardware acceleration and thteresolution
approach, modeling and interactive editing of sscknes can be
performed in real-time while maintaining a high rebend image
quality.

2 RELATED WORK

Our system is based on several techniques froratites, such as
deterministic and stochastic subdivision for geoynetynthesis
and restricted quadtree triangulations for levell@fil control. In
this section, we discuss the relation to literainréhese areas as
well as to recent GPU-based geometry synthesisiggés.

Modeling by subdivision: Many procedural modeling tech-
nigues can be expressed as subdivision algoritt8pBne sur-
faces can for example be rendered by a repeatditatm of the
de Casteljau algorithm [Bartels et al. 1987]. Suisithn surfaces
[Catmull and Clark 1978, Doo 1978] generalize modglof
smooth surfaces to meshes of general topologygsedZorin et
al. 2000] for a survey).

Stochastic subdivision / fractal modeling: Subdivision tech-
niques can also be used to create irregular, naogrsurfaces.
Such surfaces can be characterized as randomwitisa certain
frequency spectrum (often proportional té"1for some fixedh)
[Musgrave 1993]. A subdivision algorithm takes gularly sam-
pled noise signal, upsamples it to a higher sargptite and adds
additional high-frequency noise that has not begmmasented by
the lower resolution version. This scheme has Hesh intro-
duced by [Fournier et al. 1982] and extended besdhauthors:
[Miller et al. 86] propose a smooth interpolatiatheme to avoid
discontinuity artifacts. A general analysis of $tastic subdivi-
sion of scalar data arrays is given by [Lewis 1988]}ise proper-
ties are modeled by 2nd order statistics (meanjanee,
autocorrelation). It is shown how different noidearacteristics
(such as different roughness or anisotropy, e.gcréate ocean
waves) can be translated into subdivision rulefxefd neighbor-
hoods. Our approach can handle subdivision rulgscteate high
resolution points as a function of a fixed neigtitoard of the
original data (with performance depending on thighigorhood
size). This demand is met by all aforementioneddiision
schemes.

A non subdivision-based technique is described Pgrlin
1985]: Noise functions of several input attribue® used to
create complexly structured textures, allowing aepparallel
evaluation. We apply a similar idea to describe shbdivision
function. Rendering of fractal landscapes with dyitalevel of
detail is also provided by commercial software @ags such as
MojoWorld [Pandromeda 2005] or Terragen [Planet20€5].
These packages offer a high image quality; howeyengerating
such images takes at least several minutes.

Multi-resolution modeling: The classic approach for level of

detail control is the construction of a trianglerarchy that allows
a refinement or coarsening of the model by locahngle inser-
tions and deletions (see e.g. [Lubke et al. 2008hfsurvey). This
hierarchy can allow general triangle meshes [Hopp€6] or
restricted classes of meshes, such as subdivisiomectivity
meshes [Lindstrom et al. 1996]. Many techniquesehheen
described that target especially at the case dditerisualization
(see e.g. [Duchaineau et al. 1997, Pajarola 1988g& et al.

1998, Lindstromand Pascucci 2001]), mostly being based on

restricted triangle hierarchies. Recent level ofaidléechniques
mostly operate batch oriented, employing hierachigh several
thousand triangles per hierarchy node to optimieethroughput
to the GPU [Cignoni et al. 2003, Larsen and Chmis¢é& 2003,
Balazs et al. 2004]. The technique of [LosassoHoppe 2004] is
especially optimized for streaming data to the GRtguing that
geometry setup and transfer is typically more oféefimiting
factor than vertex processing by the GPU, theinriéeue does not
perform feature dependent mesh optimization bubags regular
grids of different mip-map levels to the GPU.

Our technique uses a subdivision connectivity hnéra (re-
stricted quadtree) of regularly sampled patchesilai to [Larsen
and Christensen 2003]. The regular sampling is eted facili-
tate the subdivision modeling process. The geomistrgndered
batchwise, directly from graphics memory (wherehés been
created). Following the arguments of [Losasso angpé 2004],
we think that the benefits of the regular structuvbich guaran-
tees a good utilization of the rendering pipelinatweight the
losses due to reduced adaptivity of the locallyfarmi mesh.
Currently, we use a single rectangular patch tarpaterize and
sample the data, which currently excludes genexsé meshes as
topology (which is subject of future work).

In addition to mesh simplification-based level @ftall tech-
niques, there are also point-based level of dé&tahniques that
are favorable for objects of complex mesh topoldgyplications
to landscape rendering have been demonstratedxéonme by
[Stamminger and Dretakis 2001] or [Wand et al. 3001

Parallel / GPU-based geometry synthesis. The desire for
hardware accelerated geometry synthesis and regdési not
new: For example [Max 1981] describes an implemgntaof a
raytracer for procedural terrain models implemerdeda Cray-1
vector computer. [Perlin and Hoffert 1989] employnassively
parallel raytracer for efficient rendering of prdaeally defined
noise volumes, coined “Hypertextures”. Recentlyesal papers
have been published that deal with geometry syigth@s con-
temporary GPUs. [Dachsbacher and Stamminger 20@fjoge a
multi-resolution rendering technique based on imageping:
The geometry of a terrain is encoded in a regulsaitypled patch.
This patch is then upsampled non-uniformly to ahbigresolu-
tion, spending more space in “important” regionscading to
camera distance, orientation, view frustum). Addiglly, fractal
noise is added to the geometry to increase thé td\aetail. This
technique is conceptually elegant but aims at gerdifit applica-
tion than our technique. For use as general maglgnmitive,
the application of fractal noise in distorted spaseprobably
difficult to control in contrast to regular hieraical subdivision.
[Shiue et al. 2003] propose an extension to cur@RU shader
APIs to support general mutation and subdivisiorerapons.
[Guthe et al. 2005] describe an approach for rengerimmed
NURBs and T-spline surfaces on graphics hardwairegues bit-
counting scheme for efficient, hardware-based eatmo of
trimming curves. They report a drastic performahoest due to
the GPU implementation. [Bolz and Schréoder 2003cdbe a
GPU-based algorithm to evaluate subdivision susgfaosing
precomputed tables reflecting the mesh topologyeffked tech-
nique is presented by [Shiue et al. 2005] usingaspnumeration
of vertices. In contrast to our proposal, thesé@pie support
general topologies of base meshes but do not proaid intra-
patch multi-resolution scheme, thus not being applie to ren-
dering of extended objects such as landscapes.saime argu-
ment also applies to the method of [Boubekeur astdic 2005],
who propose mesh refinement in the vertex shadecemly, a
fully procedural rendering hardware has been pregpdsy [Whit-
ted and Kajiya 2005] that executes procedures miviere to
create point rendering primitives.

2.y, F(neighborhood, i, j, d) border area (not rendered) | interior (rendered)
d SIS 7 + nattribute (T 1T " N 2k W
2%h 2 | channels 7
m R t f f f Py
...... | @ » ! T = L 2%

........) R T X2i41,2j+1 -,

........ Patch P, neighborhood I } } Py
fle e e e e (k ;: 1) ‘ ‘ ~ 1 J L
Point Xi»f((,) Patch P, Patch Py '—0—'—07—0—'—0—'—0—'7 P

Figure 1: Layout of a single patch. The Figure 2: Patches are subdivided by apply-Figure 3: Handling of borderk:neighbors

border points (Rto each side) are not
shown

3 Multi-Resolution Geometry Synthesis

In this section, we describe our proposal for handnaccelerated
multi-resolution geometry synthesis. First, we defigeometry
through subdivision, then we describe the hieraathimulti-
resolution scheme and the GPU-based prototype mggi&ation.

3.1 Modeling by Subdivision

In order to facilitate a hardware implementatione wescribe
geometry as rectangular, regularly sampled patdBash patch
describes a surface with disc topology; for mormiex topolo-
gies, several patches have to be combined. Eachlesamintx;;

in a patch is a-dimensional vector octtributes(Figure 1). The
initial patch is given by & x h array that is enlarged by a border
of 2k sample points to each side:

Initial patchPy:
xOQ0R", —Xk <i<w+X —Xk<j<h+2k

The values for the initial patch are specified bg human mod-
eler.k is the support of the subdivision function (seWw$ The
border is necessary to define a consistent sulilivifinction
(border issues are discussed in the following sttlis®. Subse-
quently, higher resolution versions of the inifi@tch are created
with the number of sample points doubling at e&etation:

Higher resolution patcRy, d > 0:
xPOR", —x<i<wZ'+2k -Xk<j<h?+2%

Sometimes, it is useful to identify points in agiaby a unique
parameter coordinatgi/2®, j/2% O [-2k, w + 2] x [-2k, h + 2K]
rather than by the indices). The higher resolution patches are
created procedurally by applyingsabdivision functior to data
from the previous level (Figure 2). The subdivisitmction
obtains a fixed ®+ 1Y neighborhood of values from the previ-
ous level as well as the current point index arfatstsion level
as input and creates a new point:

(d-1) (d-1)

X 2ok} 12k X5 24k,] 12k

%= F L dii,j

(d-1) (d-1)

X2k, jr2+k X 12+k,j 12k

The functionF is specified by the human modeler as a procedure.
There are no general restrictionsRmther than being computed
in finite time. However, for an efficient implemeation on vector
processors, thastruction streanfor computingF must not de-
pend on the valueg;®™, i orj but only ond. This doesiot mean
that the computed value is independent of thesetdies, only
the sequence of instructions doing the computatorestricted.
For more general architectures (such as Direct¥®l ghader 3.0
hardware [Ati 2005, nVidia 2005]) this restrictican be relaxed,
requiring only a spatially coherent rather thamtid=l instruction
stream.

ing a subdivision functiof to ak-
neighborhoo

are needed to create a new point. Thus, a
barder area of k points is neede

The attribute vectors;; do not need to represent geometric
guantities (such as a position in three space)nmay describe
arbitrary attributes. To create the actual geomedrymapping
functionR: R" -~ R™ m= 3 is applied. This function computes a
geometric position in three space for each atteitwgictor, proba-
bly along with other rendering parameters suchaamals, colors
or texture coordinates. Rendering buffers will laehed in mem-
ory; therefore, employing this extra mapping stepids overhead
during rendering as the mapping is only performecdeo

Handling Borders

Please note that the subdivision procedure outlateEve leads to
shrinking patches: With each subdivision step, a bordeioregf
k sample points to each side is removed. Howeveir #ize in
the original parameter domain shrinks by%1/Phis means, fod
subdivision steps, a region of at most

> Kk/2 <2k

points, measured in parameter coordinates (i.epleaspacing of
the original patch), is removed. This is the reafchoosing a
border size of+2k for the initial patch. It is guaranteed that the
“lost” area after an arbitrary number of subdivisodoes not
exceed this boundary area (see Figure 3). Constguemnly
geometry at coordinates within [@] x [0, h] (parameter coordi-
nates) is rendered. The border region is never shdwonly
affects the shape of the inner region indirectigilar to bound-
ary points of uniform B-splines [Bartels et al. 798

This effect does only occur at boundaries. If wesider more
general topologies, where several patches arehstitéogether
along their boundaries to form a quad mesh of ratyittopology,
we only need to provide boundary values at topckidborders.
In other areas, the boundary values are taken fhmmadjacent
patch. An special case is a patch with cyclic beupdonditions,
referring to a topological torus. In this case,boundary values
are needed. In general, the same is true for arpitmanifold
meshes without (topological) boundaries. Currentlyr imple-
mentation supports cyclic and border boundary d¢ardi for a
single patch only, more general topologies aréd stibject to
future work.

3.2 Multi-Resolution Hierarchy of Patches

Employing the subdivision process outlined aboke,amount of
data to be processed is quadrupled at each suiodistep. If the
viewer is very close to the surface, demandingaftrigh resolu-
tion for adequate rendering, the processing casts easily be-
come prohibitive. This problem can be alleviated dymulti-
resolution approach: Instead of increasing theluéisa for the
whole patch at once, we divide each patch in faually sized
subpatches and apply the refinement step sepatatelsich sub-
patch if it is necessary. This leads to a quadsekdivision
scheme (Figure 4). Each node in the quadtree gmmnels to a

.l |

Figure 4: Subdividing patches. A border ofFigure 5: A restricted quadtree (8 neighbor-Figure 6: Patch subdivision in hardware —
2k points is attached to each patch to allowhood) is used to make neighboring values first neighboring area is assembled to an

the computation of near-border values.

w x h array of sample points. This approach causes sute
issues that have to be addressed by the subdiakjonithm:

Handling Inner borders

The first problem is handling inner borders. Inerdo refine a
sample point with indexi,(j) in a patch, all its neighbors with
indices [—Kk ... i+K] x [j-k ... j+k] have to be known. This
means that we must have computed the 8 direct beighof a
patch to be able to compute the next level of egfiant for this
patch. In other words, the hierarchy must be al{krewn) re-
stricted quadtree [de Berg et al. 1997]. Adjacentls of resolu-
tion must not deviate by more than one level obltggon. In our
case, adjacency is defined by the 8 neighborhood gqfatch
(Figure 5). Then, we can access the values of heiging patches
to obtain values at the borders.

This constraint can easily be enforced by on-denwmdpu-
tation: Whenever a patch has to be refined, alhteigjrect
neighbors are retrieved by a sibling search algoritlf the de-
manded patch (or one of its parents) does notyst, eve call the
creation procedure recursively. After some patdbdatsions, all
necessary neighboring nodes have been build angiatich of the
next higher resolution level can be finally creat€tis “balanc-
ing” step adds additional overhead to the multehason scheme.
However, this overhead is only O(1), which is e&sysee by
assigning “overhead” subdivisions to the neighlbat demanded
for them [de Berg et al. 97]. In practice, the dned factor is
rather small: Overhead nodes only occur at thedsasfithe view
frustum (which is typically only a one-dimensiormrder in the
parameter domain, affecting ©f) of then nodes). The varying
resolution due to the distance to the camera im@oth function
which usually already demands small spacings ioluésn by
itself.

A second problem, also caused by the variatioresblution,
is the triangulation of the surface: We would litee display a
continuous, triangulated surface when renderingpiditehes. As
we are already forced to build a restricted quadtierarchy for
modeling, the solution is straight-forward: Considg one node,
the neighboring nodes can only differ by at mose ¢evel of
resolution. Correspondingly, only a small numbertridingula-
tions can occur which can easily be precomputedilgi to [Lar-
sen and Christensen 2003]) and instantiated dueindering.

Multi-Resolution Rendering

During rendering, we traverse the quadtree top-damahstop the
descent if a node meets the precision requirenfgrasnode does
not exist, it is created, as outlined above). Ddfe¢ metrics can be
employed at this step. We currently use the follayyirather
canonical rule: The decision whether to render denis solely
based the bounding box of its geometry (which loabe deter-
mined during or after geometry synthesis, see belbwdes with
bounding boxes completely outside the view frustm never
rendered. Nodes inside the view frustum are rendésed the
descent is stopped) if their projected, on-scresplution exceeds

available. Red: additional hierarchy levels, enlarged patch, then the subdivision shader
enforcing at mo: one level cfference

is employed

a user defined threshold. The on-screen resoligi@stimated by
dividing the side length of the largest side of bleeinding box by
the number of points along one edge of the patah émploy
square patches only, witth=h). This value is then projected onto
the screen by dividing by the minimumvalue of the bounding
box and scaling by a constant according to reswiuind viewing
angle. A near-clipping plane is included in thewifustum to
avoid demanding infinite resolution (additionally,fixed upper
limit can also be specified, if desired).

When all patches have been selected from the bferaeach
patch is rendered as a triangle mesh. The meshosen from a
list of precomputed vertex indexing buffers by ddesng the
resolution of the neighboring patches.

3.3 Hardware Implementation

The algorithm involves two major tasks: Managemehtthe

restricted hierarchy and processing of the poirterarchy man-
agement involves the traversal of irregular datacstires which is
difficult to accelerate by special purpose hardwatais, this task
is done by the CPU. If the resulting CPU load & iagh, we have
the option to increase the number of sample pqgiets patch,
trading-off the adaptivity of the multi-resolutioapresentation for
less hierarchy management workload for the CPUgérapatch
sizes lead to a less accurate view frustum culiimg some over-
sampling at parts of the patch farther away froentiewer. How-
ever, for typical patch sizes of about®3264 triangles, such
adverse effects are small while already placingtiaén computa-
tional burden to the hardware accelerated patcbegsing.

Hardware Subdivision

The first step for creating higher resolution pagls the assem-
bly of the X-neighborhood: The original patch is copied into a
buffer enlarged by R sample values at each side. Then, the 8
neighboring patches are fetched from the hieraesit/the values
at the border to the current patch are copied @édtirder regions
of the larger buffer (Figure 6) using a BitBlit apgon on the
graphics hardware.

The second step is the computation of the highlutsa
data. First, fouw x h sized destination buffers for the 4 children
are allocated. Then, the subdivision functerhas to be evalu-
ated. This step is usually the most expensive efatgorithm and
the main goal of our architecture was to allow &or efficient
hardware implementation at this point. This evatratcan be
implemented very efficiently on a vector processarghitecture
(SIMD): The patch consists of several sample padin# can all
be processed in parallel, using the same instnucticeam. In our
implementation, we use typically 3patches corresponding to
1024 potentially parallelizable function evaluason

The third step is the creation of rendering datajglying the
mapping functiorR. For this step, a new buffer (probably with a
different number of attributes per point) of thengasize as the
source patch (but omitting the border region) leabe allocated
first. Then,Ris applied to each point of a patch independearily

the result is written into the output buffer. Thisocess can be
executed on the same hardware as the subdivisiocesgs, the
only difference is that no upsampling takes place.

The last step is the rendering step: A precompumex
buffer of triangles is chosen and the data in #raering buffer
provides the vertices of the mesh. Each vertexigesva position
in 3 space and probably further shading attribstesh as normals
and color. This data can be processed directlyang efficiently
by a contemporary programmable GPU.

The created patches, both subdivided and renddatey are
not deleted after rendering but kept in memoryfédure use. A
LRU scheme is applied to track the reusage of thesters. If
memory is filled-up, patches that have not beenl deethe long-
est time are deleted first to free memory.

GPU-based I mplementation

We have implemented a prototype of our algorithmaopro-
grammable GPU, using OpenGL and CG as API (see pO0b,
nVidia 2005] for details on the programming capiéibd men-
tioned below). We map the computationally internteps of sub-

division (F) and mappingR) to the pixel shader of the GPU.

These units provide several parallel ALUs that banused in a
SIMD programming model: Each pixel is being compluiede-
pendently, using the same instruction stream. Aafthily, the
number of output pixels has to be specified in adeawhile the
amount of input data may vary, according to thedshg@rogram.
These conditions are met by our geometry synttiesimique.

Mapping of the algorithm to a programmable GPUWiaight-
forward: Patches are represented as textures ffifgbesed as
source) or render targets (if being used as destirjaln order to
avoid switching of render targets, only one rertdeget is created
and used as temporary buffer. The data is copied texture
associated with a patch directly after each contjmmavia on-
board memory transfer.

The attribute channels of the patches are impleadensing
multiple render targets: On the latest hardwareh gaxel shader
can read from up to 16 textures and output to w tender tar-
gets, both providing up to 4 32-bit floating poatitannels each. In
this way, up to 16 floating point attribute charmnean be handled
in one rendering pass. For more attribute chanmeldtiple ren-
dering passes are necessary. The example scethis fraper use
12 (landscapes) and 8 (subdivision surfaces) 3fidating point
channels, respectively.

In our implementation, initial data for patély can be speci-
fied by importing data from data sources such addeape eleva-
tion data or by interactive painting on the 3d-getr)sn We allow
arbitrary amounts of initial data, main memory pigting. If the
initial data is larger than a patch (i.e. typica88 plus border), a
multi-resolution pyramid is build in main memory lsybsam-
pling (currently nearest-neighbor subsampling)dfiginal data in
a quadtree of patches. This initial pyramid is Hedidn software
and patches are transferred to the graphics baardemand. If
the demanded rendering resolution exceeds thétedhtitial data,
the hardware accelerated geometry synthesis i&&uo

The subdivision functiofr and the mapping functioR of the
geometry synthesis are represented as pixel sipadgrams. The
latest shader standard (DirectX 9, shader model [2005,
nVidia 2005]) even allows data dependent branchinipe pixel
shader, extending the strict SIMD model. The acdtdeperform-
ance depends on the coherency of the instructiczarss for
neighboring data. In our example scenes, we douset data
dependent branching but only conditional writed tha not alter
the instruction stream, which has turned out tcsbiicient for
our models.

Lastly, a further vertex/pixel shader pair is usadfinal ren-
dering of the resulting triangle meshes. The reruldfers are

created by copying the content of the render tadiectly to a
vertex buffer, which is supported by current Open@ndor
extensions. Copying to a vertex buffer is veryafnt on current
hardware. An alternative would be the usage ofutextetches in
the rendering vertex shader. This method has twardage of
easily allowing for interpolation between adjacesuthdivision
levels to avoid popping artifacts, which is notlimed in our
current implementation based on copying buffers.

Our GPU-based implementation processes all geontletiy
on the GPU only, with one exception: In order totcol the
multi-resolution rendering, the bounding boxeshaf synthesized
geometry have to be known to the CPU. Thus, th@iposhan-
nel of the rendering data has to examined and thénmam and
maximumx, y andz coordinates must be determined. This is done
in two steps: First, we reduce the amount of dataettransferred
by scaling down the patches [Buck and Purcell 200¢¢ use a
pixel shader that computes the minimum and maxinatmes of
4x4 neighborhoods and outputs them to an eightfoltlged
patch of data. This process can be repeated itehatiln our
experiments, one such reduction pass was sufficeergecond
pass did not lead to a further reduction of ther@aVeomputation
time. After reduction, the resulting data is reaatclb to main
memory and the bounding box is computed by the G&41, now
requiring only little transfer bandwidth. Up to i€ad back opera-
tions are performed in one batch from the sameatemtu buffer
to reduce synchronization overhead.

4 Modeling

We have implemented two different modeling techegjto ex-
amine the practical applicability of our proposal:

Smooth surfaces: To model smooth surfaces, we first need a
parameterization of the surface as a planar patben, well-
known techniques such as subdivision surfaces lorespubdivi-
sion can be employed. As an example, we have ingiesd the
bicubic B-spline subdivision model of the Stanfdsdnny de-
scribed in [Lossaso et al. 2003]: The authors er@apeometry
image of the bunny geometry and compute verticesafteast
square B-spline subdivision surface approximative. have used
the data from this paper (which is available onwied) and reim-
plemented the subdivision process. In addition ite original
paper, our implementation provides adaptive meietution
modeling and rendering, allowing for close-ups bjects without
loss of detail or serious penalties to the rendgpierformance.

Multi-channel fractals: The multi-resolution approach of our
modeling technique allows handling of large, exsshanodels
such as an entire landscape. To define such madelsmploy a
fractal modeling technique which we catlulti-channelfractals
The object is described by a set of attribute cbeEnocorrespond-
ing to different surface properties. In our example use a height
channel describing the landscape as a height fhaditionally,
we have channels for surface roughness, vegetdeéosity for
different layers of vegetation (shown as differentors during
rendering), and a snow layer. Each channel confedmsal 1f"
noise (with non-stationaryn). To create believable landscapes,
interdependences between these channels are iogéwda the
subdivision step:

The height field is created by first interpolatitige local
neighborhood using a smoothing filter. Then, randooise is
added with an amplitude of® with h being a smoothness pa-
rameter which is stored in a separate channel.hf¢teannel is a
fractal itself: It is also created by smooth fiitey of neighboring
h values and random additions. However, we prefgrelavalues
of h (leading to smoother terrains due to smaller nisiseements)
if the value in the height channel is small (i.@ ave in the area of
a vally). Converselyh is decreased (leading to more roughness) if

the slope of the height field at the current lesklresolution is
large, leading to more roughness at steep mouidagsBoth is
implemented by blending between the channel and a
height/slope depended according to the subdivision level. At
low levels, a strict correlation of roughness tagheand slope is
enforced while more randomness is allowed at smsdigles.

Similarly, vegetation textures and a snow densigy @eated
by employing fractal channels, which are influented not de-
termined entirely by height and slope. For snow, expect a
smooth surface appearance at thick layers of sitw. thicker
the layer of snow, the more high frequency detaits attenuated.
Consequently, the values in the roughness chdnaet strongly
enlarged in regions with a large value in the sobannel. The
result conveys an quite realistic look of snow-cedeareas in a
rough mountain range. This interplay of fractaldamness and
parameter interdependence yields landscapes wéttuitar attrib-
utes but believable mutual influence and can priybhe em-
ployed to approximate a variety of other naturaén@dmena, too.
Of course there are limitations. For example, wenoa directly
simulate global physically-based effects such asien [Mus-
grave et al. 89].

5 RESULTS

The results reported in this section have been unedson a
system equipped with an nVidia GeForce 6800GT AGRplgcs

board (256MB video ram) and a 2.6GHz Pentium 4 CPhk

software has been implemented in C++ and all sisaueve been
implemented in CG [nVidia 2005]. The shader codeasonical

C code, no assembly code or hardware specific @mtions

have been employed. Figure 8 shows renderingsafipbe mod-
els created with the techniques described in Sedtidhe images
are annotated with the rendering time (from cacti®, rebuild

time (rendering with emptied caches) and a typieatlering time
for a walkthrough (as shown in the accompanyinge)d

Smooth surface: The bunny model in Figure 8(a) has been
constructed using the technique of [Lasasso e2@)3], as de-
scribed in Section 4. The subdivision shader perfosmoothing
and normal vector computation, rendering is doneabsimple
environment mapping shader (to show the surfaceomess).
For a typical viewpoint, we obtain 33 frames perosel and only
moderate reduction for a moving observer (see Yideo

Fractal landscapes. The landscape models in Figure 8(b) -
(e) have been created using the multi-channeldraethnique.
For rendering, antialiased shadow maps (12 samged) an
approximate atmospheric scattering model have leeeployed
[Hoffman and Preetham 2002]. The vegetation tex(diéerent
shades of green) and the snow have been modelidctal at-
tribute channels (as described in Section 4); ttessghas been
additionally modulated by a periodic 2d texture.

A basic landscape scene is shown in Figure 8(b3. Siown
view consists of 604 patches of?32rtices, accounting for about
1.2 million triangles. At the shown quality levél,can be ren-
dered at about 6 frames per second. The througtighe render-
ing stage is currently limited by the complexity tbk rendering
shaders which have to compute the quite involvglatihg model.
Additionally, some of the mapping steps (such alrow of
vegetation layers) are still computed during reimdgto facilitate
interactive landscape design. A rebuild of all gets from
scratch takes 2.4 seconds; however, due to tempoterence,
the average frame rate during a walkthrough doésdrap sig-
nificantly (see video). Figure 8(d) shows a simgaene, but with
more roughness and more snow. Please note howte chan-
nel automatically damps out high frequency noisading to the
impression of rough terrain covered by a layerradve of differ-
ent thickness. Figures (e) and (f) show a vari&tih® model from

Figure 8(b). Here, a second fractal layer has hegnduced to
model water. The second layer is computed for gmthh after
the landscape layer so that its attributes carcbesaed for defin-
ing the second layer. It is rendered with a wakexder (using an
additional rendering pass to create a mirrored anckfracted
image of the landscape). The foam at the coagticesated by a
fractal channel similar to the vegetation chanfiéie overall

shape depends on water depth but also shows raadoations.

Due to the double layer modeling and the multipdedering
passes, the framerates are lower. Figure (e) gntlaffe been
created with different level of detail settings,rwiag the pro-

jected vertex spacing parameter as described itoBex2. A last
example is shown in Figure 8(c). For this scene,haee used
height field data of the grand canyon [US Geoldgi8arvey

2005] and added different fractal channels. Theimal data is
400, a 32 patch sized multi-resolution pyramid of the origin
data is created by the CPU, geometry synthesipjdieal for

deeper levels of subdivision (see the video forimteractive

walkthrough). Figure 7 shows the variation of tkadering time
and the number of overall and rebuild patches pané during
the walkthrough of this scene. Due to caching, enfgw patches
have to be rebuild for each frame so that intevactialkthroughs
are possible.

Evaluation: We have measured how much time is consumed

by the different parts of the algorithm: Comparithg costs for
geometry synthesis and rendering, we observe arfattbout 6-
14. It is interesting to further split up the syedls costs into
actual hardware processing costs and time needédedbound-
ing box calculation (which involves reading backadkom GPU
memory). Due to the min/max reduction step (aggregaf 4x4

neighborhoods in a pixel shader), only a moderaerh®ad is
observed: 10% of the rebuild time (landscape séégere 8(b))
and 25% (bunny scene), respectively, are sperttdanding box
calculation. Without prior reduction, the overhéagignificantly

larger (41% and 57% respectively). The overheddrger for the
bunny scene because the subdivision shader is cl@splex.

During animations, the average percentage of rémgletime

spent for bounding box calculations is about 1% dlhrscenes
(due to caching) so that this overhead is not yeafl issue in
practice.

A last, important point is to examine the benefiadardware
implementation. We have compared the executiondspéehe
GPU implementation with a CPU implementation. Alsshkders
have been written in CG, we were able to compitacat the
original code with a C++ compiler (Intel C++ 7.1l eptimiza-
tions enabled). Only a few CG specific commands datd types
had to be translated into macros and classes nlitfeifunctions.
Textures have been modeled as conventional, twerdianal C
arrays. This approach (plain C++ code) reflectstipécal pro-
gramming approach in practice. However, it is &idlsed a bit in
favor of the GPU, as vector data types are nonsitr in standard
C++ (although the employed compiler automaticaligst to em-
ploy SSE SIMD instructions) and we do not use atinuped
texture memory layout. Hence, the results shoulatdresidered
with some care. Using this setup we have meastieddmputa-
tion time of the subdivision shader on both the Gitid GPU of
the test system. We have obtained a computatioa ¢ifr0.5 ms
per patch for the GPU and 7.25 ms for the Pentiuth®4GHz
(factor 14.5) for the subdivision shader of thedsgape model of
Figure 8(b). For the bunny model subdivision shatthe result is
0.4 ms for the GPU and 1.3 ms for the CPU (fact@6B. The

1 We have also repeated the CPU benchmark on auRentB.4 GHz, the
fastest machine we had access to. This yieldedmeaihce factors of 11.8
and 2.5, respectively, to the GeForce 6800 GT GRifortunately, we

did not have a system available with an ATI Rad&®800 or nNvidia
GeForce 7800 GTX graphics board for comparison witligh end GPU.

speedup for the bunny scene is appreciable butifisemtly
smaller than for the landscape scene. Again, thiduie to the
much shorter shader which puts more emphasize ditiathl
CPU-GPU communication overhead. For the landscegmes the
speedup is more than an order of magnitude. Héniseprobably
save to assume that the hardware-based implententaiil still
provide a substantial performance benefit for sgsitting com-
plex geometry even if more aggressive low-level Gipitimiza-
tions are applied.

6 CONCLUSIONS AND FUTURE WORK

We have proposed a new hardware accelerated mgdatid
rendering technique that can be implemented on gatallel
architectures such as current GPUs. The algorithmpl®/s a
hierarchy of regularly sampled patches to fac#itan efficient
implementation on SIMD processing arrays. Thiscite maps
well to pixel shaders of current GPUs, allowing faxecuting
modeling and rendering almost entirely on the GRidlding a
substantial performance improvement.

There are several directions for future work. Fissime tech-
nical implementation issues (such as blending batwesolution
levels to avoid popping) could be improved. Morepariantly,
the implementation should be generalized to suppemeral base
meshes. Currently, each patch is treated separ@te/ can be
seen by a small hole in the bunny surface; thengtitation
scheme does not connect the outer borders of thratey image
to a closed surface). This extension is mostlyigititéorward. The
main issue is handling of neighborhoods at extiaargt vertices
(valance# 4). Here, the technique of [Bolz and Schrdoder 2003
could be a starting point to be generalized foremgeneral, sto-
chastic subdivision techniques. Lastly, the sulsitivi topology
could be made more flexible: Due to the limitatiosfscurrent
GPUs, we can only handle regularly sampled, rectangatches.
It would be interesting to examine subdivision sutbat allow a
change of topology during subdivision. In combioatiwith a
point-based rendering approach, more general shepds be
created. This would involve a generalized concdphesghbor-
hoods and a subdivision unit with a variable numbieoutput
data points.

Acknowledgements

This work has been supported by the state of Badéritemberg
(Germany) and the Max Planck Center for Visual Cotimg and
Communication. The authors wish to thank Leonidasbés,
Martin Frisch, Timo Schairer, Andreas Schilling,dawolfgang
StraBer and the anonymous reviewers for their dduaom-
ments. We especially wish to thank Alexander Bermeno
Fleck, Mark Hoffmann, Philipp Jenke, Benjamin Mafer help
with the implementation and Robert Kuchar for pdivg the
skylight maps. The environment map for the bunngnschas
been taken from P. Debevec’s web site (www.debevgk.

References

ATI, 2005.ATI developer relationshttp://www.ati.com

BALAZS, A., GUTHE, M., AND KLEIN, R.,2004. Fat borders: Gap
filling for efficient view-dependent lod renderinign: Computers
& Graphics 28(1), 79-86.

BARTELS, R.H., BEATTY, J.C.,andBARSKY, B. A. 1987.An
Introduction to Splines for use in Computer Graghand
Geometric ModelingMorgan Kaufmann Publishers.

BoLz, J.andSCHRODER P.,2003:Evaluation of Subdivision Surfaces
on Programmable Graphics Hardwatettp://www.multires.
caltech.edu/pubs/GPUSubD.pdf

| [rendering time M subdivisions patches |

500 75
\ i [7)
/ i | c
400 - 60 g
‘ <
iy 7]
é 300 45 g-
2 200 30 2
£ -
= H
100 15 &
@
»

0 0

1 100 200 300 400 500
Frame Index

Figure 7: Overall rendering time, number of rebyidches and
number of overall patches for the frames of then@r@anyon
flyover (see accmpanying videc

BOUBEKEUR, T., and 8HLICK, C., 2005: Generic Mesh Refinement
on GPU. InGraphics Hardware 2005

Buck, I., PURCELL, T., 2004: A Toolkit for Computation on GPUs.
In: GPUGemsAddison-Wesley.

CATMULL , E.,andCLARK, J.1978. Recursively generated B-spline
surfaces on arbitrary topological meshesQamputer Aided
Design 10(6), 350—355.

CIGNONI, P.,GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO,
F.,andScoPIGNQ R. 2003: Planet-Sized Batched Dynamic
Adaptive Meshes (P-BDAM). IVisualization 2003
Proceedings

CoOK, R.L.,CARPENTER L., andCATMULL , E., 1987. The Reyes
image rendering architecture. @omptuer Graphics21(3), 95—
102.

DACHSBACHER C.,andSTAMMINGER, M., 2004: Rendering
Procedural Terrain by Geometry Image WarpingPirac. of
Eurographics Symposium on Rendering 2004

DE BERG, M., VAN KREVELD, M., OVERMARS, M., and
SCHWARZKOPF, O.,1997: Computational Geometry — Algorithms
and Applications, Springer Verlag.

Doo, D.1978. A subdivision algorithm for smoothing down
irregularly shaped polyhedrons. Proc. on Interactive
Techniques in Comuter Aided Desig®7-165.

DUCHAINEAU, M., WOLINSKY, M., SIGETI, D. E.,MILLER, M. C.,
ALDRICH, C.andMINEEV-WEINSTEIN, M. B. 1997: ROAMing
Terrain: Real-time Optimally Adapting Meshes. Vikzeation 97
Proceedings, 81-88.

FOURNIER, A., FUSSEL D., and QRPENTER L., 1982. Computer
Rendering of Stochastic Models. Bommunications of the ACM
(25)6, 371-384.

GUTHE, M. BALAZS, A, andKLEIN, R., 2005: GPU-based trimming
and tessellation of NURBS and T-Spline surfacesAGM
Transactions on Graphics, 24(3)

HOFFMAN N., andPREETHAM, A.J. 2002: Rendering Outdoor Light
Scattering in Real Time.
http://www.ati.com/developer/techpapers.html

HopPE H.: Progressive meshes. BIGGRAPH 96 Proceedings,
Annual Conference Serigg9-108.

LARSEN, B.D.,andCHRISTENSEN N.J.,2003: Real-time Terrain
Rendering using Smooth Hardware Optimized Levéetail. In:
Journal of WSCGVol.11, No.1.

LosAassqQF.,andHoOPPE H., 2004: Geometry Clipmaps: Terrain
Rendering Using Nested Regular Grids. ACM Transactions
on Graphics, 23(3)

LosAssQF.,HOPPE H., SCHAEFER S.,andWARREN., J., 2003:
Smooth geometry images. IBurographics Symposium on
Geometry Processing 200838 — 145. Data taken from
http://research.microsoft.com/~hoppe

(a) Stanford Bunny — subdivision surface
rendering (c.f. [Losasso et al. 2003]),

(b) Landscape scene — 604 patches,
rendering time 169 ms, rebuild from

(c) Grand Canyon — initial 48Geight
field from [US Geological Survey 2005],

1089 control points, 184 patches (188416scratch 2438 ms, walkthrough (see video) 433 patches, rendering time: 130 ms,

vertices), rendering time 30 ms, rebuild
from scratch 251ms

152 ms per frame (av.)

rebuild from scratch 955 ms, walkthrough
(see video) 136 ms per frame (av.)

(d) Mountain range at sunset — renderinge) Mountain Lake — a variant of landscape (f) Mountain Lake — a variant of land-

time 228 ms, rebuild from scratch 2487

(b), medium resolution (2.2 pixel per

scape (b), high resolution (1 pixel per

ms, 985 Patches, walkthrough (as showntriangle, 2586 patches), rendering time: triangle, 21039 patches), rendering time:

in the video) 231 ms per frame (av.).

196 ms. Rebuild from scratch: 1079 ms. 370 ms. Rebuild from scratch: 3241 ms.

Figure8: Application examples. In all examples, a n-resolution patch mtains32? vertices (ank = 3 vertices borde

LEWIS, J.P., 1987. Generalized Stochastic SubdivisionAGM
Transactions on Graphic$6)3.
LINDSTROM, P.,KOLLER, D., RIBARSKY, W., HODGES L.F., FAUST,

N.,andTURNER, G.A.,1996. Real-time, continuous level of detail

rendering of height fields. I'BIGGRAPH 96 Proceedings,
Annual Conference Serie509-118.

LINDSTROM, P.,andPAscuccy, V., 2001. Visualization of Large
Terrains Made Easy. In: Visualization 2001 Procegsli

LUEBKE, D., REDDY, M., COHEN, J.D.,VARSHNEY, A., WATSON, B.,
andHUEBNER, R.: Level of Detail for 3D Graphigsviorgan
Kaufmann Publishers, 2003.

MAX, N.L. 1981. Vectorized Procedural Models for Natural &err
Waves and Islands in the Sunset. Gomputer Graphicy15)3.

Miller, G.S.P., 1986. The Definition and Renderofgrerrain Maps.
In: Computer Graphicq20)4.

MUSGRAVE, K.F.,KoLB, C.E., and McCE, R.S., 1989. The synthesis
and rendering of erroded fractal terrains.Computer Graphics
(23)3.

MUSGRAVE, K.F., 1993.Methods for Realistic Landscape Imaging
PhD thesis, Yale University.

NVIDIA, 2005.nVidia developer relation$ttp://www.nvidia.com

PANDROMEDA 2005:MojoWorld software package.
http://www.pandromeda.com

PERLIN, K., and HOFFERT, E.M., 1989. Hypertexture. l€Comptuer
graphics 23(3).

PERLIN, K., 1985. An Image Synthesizer. Bomptuer Graphics
19(3).

PLANETSIDE SOFTWARE2005: Terragen software package.
http://www.planetside.co.uk

PAJAROLA, R., 1998. Large Scale Terrain Visualization Usitng T
Restricted Quadtree Triangulation. Yisualization 98
Proceedings

ROTTGER S.,HEIDRICH, W., SLUSSALLEK, P.,andSEIDEL, H.P.1998:
Real-Time Generation of Continuous Levels of DdtailHeight
Fields. In:Proceedings of the 6th International Conference in
Central Europe on Computer Graphics and VisualaatB15—
322.

SHIUE, L.J.,GOEL, V., andPETERS J.2003. Mesh Mutation in
Programmable Graphics Hardware. Graphics Hardware 2003

SHIUE, L.J.,JONES |., andPETERS J.: A Realtime GPU Subdivision
Kernel. In: ACM Transactions on Graphics, 24(3)

STAMMINGER, M., andDRETTAKIS, G., 2001: Interactive Sampling
and Rendering for Complex and Procedural Geomktry.
Rendering Techniques 2001

US GEOLOGICAL SURVEY, 2005:http://edc.usgs.gov/geodata/

WAND, M., FISCHER M., PETER |., MEYER AUF DERHEIDE, F.,and
STRARER W.,2001: The Randomized z-Buffer Algorithm:
Interactive Rendering of Highly Complex Scenes SIGGRAPH
2001 Proceedings, Annual Conference SeB64—-370.

WHITTED, T.,andKAJIYA, J., 2005: Fully Procedural Graphics. In:
Graphics Hardware 2005

Zorin, D., Schréder, P., DeRose, T., Kobbelt, leyin, A., and
Sweldens, W., 2000. Subdivision for Modeling andmation.
In: Siggraph 2000 Course Notes

(b) Landscapee (169 ms / 2438 ms) (c) Grand Canyon (130985 ins)

(d) Mountains at sunset (228 ms / 2487 ms) (e) NinrLake (low resolution, () Mountain Lake (high resolution,
169 ms /1079 ms) 370 ms / 3241 ms)

Color PlateHardware Accelerated Multi-Resolution Geometry 8gais Figure 8, Application examples.
Timings: rendering from cache / rendering with fglbuild.

