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Abstract
In this paper, we propose a novel surface reconstruction technique based on Bayesian statistics: The measure-
ment process as well as prior assumptions on the measured objects are modeled as probability distributions and
Bayes’ rule is used to infer a reconstruction of maximum probability. The key idea of this paper is to define both
measurements and reconstructions as point clouds and describe all statistical assumptions in terms of this finite
dimensional representation. This yields a discretization of the problem that can be solved using numerical opti-
mization techniques. The resulting algorithm reconstructs both topology and geometry in form of a well-sampled
point cloud with noise removed. In a final step, this representation is then converted into a triangle mesh. The pro-
posed approach is conceptually simple and easy to extend. We apply the approach to reconstruct piecewise-smooth
surfaces with sharp features and examine the performance of the algorithm on different synthetic and real-world
data sets.

Categories and Subject Descriptors (according to ACM CCS): I.5.1 [Models]: Statistical; I.3.5 [Computer Graphics]:
Curve, surface, solid and object representations

1. Introduction

In this paper, we consider the problem of surface reconstruc-
tion from unorganized, noisy point clouds. This problem ari-
ses in various application areas of computer graphics. The
most important is probably the reconstruction of geometry
from range scanning devices. Most current 3D surface scan-
ning devices (such as structured light, time of flight and ma-
ny stereo vision based scanners) create unstructured clouds
of measurement points in three space. Due to physical limi-
tations, these points are distorted by various kinds of measu-
rement noise. This poses at least two challenges to a surface
reconstruction algorithm: First, the surface topology has to
be retrieved, and second, the geometry has to be reconstruc-
ted from the unorganized point cloud, i.e. noise artifacts ha-
ve to be removed. These two tasks are often intertwined, as
noise affects both the rough and fine scale reconstruction.

In this paper, we propose a surface reconstruction ap-
proach based on Bayesian statistics [DHS01]. Bayesian re-
asoning is probably the most canonical (and most often ap-
plied) technique to solving general reconstruction problems.
The basic idea is easy to describe: Assume that we are gi-
ven a real-world scene S and a measurement D (data). We
then consider the probability space of Ω = ΩS ×ΩD, the set

of all possible real-world scenes and of all possible measu-
rements of them. We know that the measurement D is crea-
ted from S by a process involving statistical errors. We assu-
me that we understand (at least roughly) the deficits of the
measurement process so that we can find an analytic mo-
del of P(D|S), which is the probability distribution of the
likelihood of measurements D being made of scenes S. This
knowledge by itself does not allow for a reconstruction. As-
suming an unbiased measurement process, the most proba-
ble original scene is still the measurement itself (including
all the noise). The Bayesian statistics approach to this pro-
blem is defining a probability distribution P(S) over the set
of all possible original scenes. Then, we can apply Bayes’
rule to invert the measurement process in a statistical sense.
We compute the probability of a reconstruction S being the
original scene given measurement D as:

P(S|D) =
P(D|S)P(S)

P(D)
=

P(D|S)P(S)∫
ΩS

P(D|S)P(S)dS
(1)

The probability distribution P(S) (so called prior distribu-
tion) will usually not be an exact probabilistic model of all
potentially measured scenes (which is infeasible and proba-
bly not even well defined) but only a description of partial
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prior knowledge or belief of reasonable models (such as as-
suming smooth surfaces).

In order to find the most likely reconstruction, we have to
determine the scene S that maximizes P(S|D), the so called
maximum a posteriori solution SMAP. As the denominator
in Equation 1 is only a normalization constant, not depen-
ding on S, it is sufficient to compute:

SMAP = argmax
S

P(S|D) = argmax
S

P(D|S)P(S) (2)

The Bayesian framework provides an elegant and intuiti-
ve way of defining reconstruction problems in terms of a
probabilistic model of the measurement process and pri-
or beliefs about the object to be reconstructed. However,
only few authors have applied the technique to the recon-
struction of three dimensional geometry from point clouds
[ST89, LP99, DTB06]. A major technical problem is the de-
finition of the probability space for S: A canonical choice
would be to consider S being a subset of R

3. However, de-
fining a probability space over all of these sets is not possi-
ble and defining a suitably reduced class is mathematically
involved. Even then, such a representation is not algorithmi-
cally tractable but must be discretized prior to a numerical
solution.

At this point we employ an engineering solution: We di-
rectly define the set of original scenes to be point clouds
themselves that have been subsampled and distorted during
the measurement process. This yields a probability space of
Ω = ΩS ×ΩD = R

3n ×R
3m, where n is the number of origi-

nal points and m the number of measured points. This space
can be treated with mathematical standard tools. The prior
scene model will be partially based on differential proper-
ties of S. In our discretized model, we will approximate these
quantities with local fitting models. The main advantage of
the point-cloud-based scene model is its generality: Given a
large enough number of points n, almost arbitrary real-world
scenes can be represented effectively. Especially, it is no pro-
blem to adapt the point-based model to arbitrary topologies.

The remainder of this paper is structured as follows: Af-
ter discussing related work in the next section, we develop a
measurement and prior probability model in Section 3. The
prior model will include both assumptions on continuous
properties (such as surface smoothness) as well as discrete
properties for representing sharp features. In Section 4 we
describe how to find an approximate maximum a posteriori
reconstruction using numerical optimization for continuous
and a heuristic search for discrete properties. Finally, as de-
scribed in Section 5, the reconstructed point cloud is con-
verted into a triangle mesh using a standard triangulation
algorithm [HDD∗92] that has been augmented to recogni-
ze the reconstructed information about sharp features. Final-
ly, we apply our reconstruction pipeline to a set of artificial
and real-world data sets to examine the reconstruction per-
formance in practice.

2. Related Work

Surface reconstruction from point clouds is meanwhile a
classic problem in computer graphics. A variety of techni-
ques have been proposed, which can be classified roughly
by the internal representations used for reconstruction:

Implicit functions: One class of surface reconstruction
techniques uses implicit functions to represent the surface.
This approach was pioneered by the work of Hoppe et al.
[HDD∗92]. First, normals are estimated by a local prin-
cipal component analysis (PCA), followed by a neighbor-
hood graph search to unify their inside/outside directions.
Then a marching cubes algorithm [LC87] is employed to
reconstruct the surface as the zero-levelset of an implicit
signed distance function defined by the estimated surface
normals. We will use a similar procedure as final step of
our algorithm, applied to the reconstructed point cloud. Ma-
ny extensions of the basic approach have been proposed: A
subdivision-based technique to handle piecewise smooth ob-
jects is described in [HDD∗94]. Dinh et al. [DGS01] employ
anisotropic basis functions to improve the representation of
sharp features. Another option for defining the implicit func-
tion is to use radial basis functions (RBF). Early work used
globally supported functions (e.g. [TO99]), leading to qua-
dratic complexity. The complexity can be reduced using a
fast multipole method [CBC∗01]. Ohtake et al. [OBA∗03]
define the surface locally via quadratic functions that are
blended together globally by weights summing to one (par-
tition of unity). Spatial subdivision is employed to adapt the
resolution to the data; sharp features are detected by normal
clustering and represented using multiple sets of coefficients.

Moving Least Squares (MLS): MLS approaches are a
special case of implicit function-based-techniques. They de-
fine a surface as an invariant set of a projection operator.
The projection operator is defined as a numerical optimi-
zation step on a locally constructed implicit function. Le-
vin [Lev03] presents the projection strategy for general sur-
face interpolation. Alexa et al. [ABCO∗03] have introduced
the technique to the field of computer graphics. Many va-
riants of the technique have been developed in the mean-
time: Reuter et al. [RJT∗05] propose special basis functi-
ons for use in the MLS projection to account for (known)
sharp features. Fleishman et al. [FCOS05] use robust stati-
stics to exclude outliers from the fitting process. Different
pieces of a piecewise smooth surface are treated as outliers,
preserving those feature lines. In comparison with our ap-
proach this technique has the advantage (as all MLS techni-
ques) of being fully locally defined so that it can be applied
to different small pieces of the model independently. A di-
sadvantage is that considering sharp features as fitting out-
liers does not allow for a more specific statistical model of
the shape for such feature lines. Additionally, the topology
of the feature lines is not reconstructed explicitly, which is
useful for certain types of further processing, such as mes-
hing. Another interesting MLS variant is proposed by Shen
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et al. [SOS04]: Considering the limit of an MLS-kernel with
increasing local weight allows a faithful reconstruction of
discrete objects such as even triangle meshes, without arti-
ficial smoothing. Involved numerical integration techniques
are used to compute the corresponding integrals.

Voronoi / Delaunay techniques: Amenta and colleagues
approached the reconstruction problem from a computatio-
nal geometry point of view [ABK98, ACK01], focusing on
topology reconstruction. Their method gives provable gua-
rantees for reconstructing the true topology given a mini-
mum sampling density dependent on the local feature size.
The original approach fails under the influence of noise, but
extensions to the algorithm that a capable of handling noisy
input have recently been developed [MAV∗05].

Mesh Smoothing: One aspect of the reconstruction is noi-
se removal. For this purpose, a number of filtering tech-
niques for triangle-meshes have been proposed, in analogy
to image filtering operations [Tau95, DMSB99, DMSB00].
These techniques are usually very efficient in terms of run-
ning time and yield good results, but do not provide an expli-
cit statistical model based on assumptions on measurement
errors and/or general prior expectations.

Statistical learning: Recently, statistical data analysis
and machine learning techniques have gained some attention
in the graphics community (see e.g. [DHS01] for an intro-
duction). Ivrissimtzis et al. [IJS03] employ neural networks
for surface reconstruction, representing the network via a
triangle mesh. The network reacts to point sample signals
and updates the mesh respectively. Steinke et al. [SSB05]
use support vector machines for reconstruction, hole filling
and morphing between datasets. [SBS05] use locally defined
kernels that analyze the point neighbourhood to compute a
global surface probability distribution. Pauly et al. [PMG04]
propose a technique to quantify uncertainty in point cloud
data, which can then be used for surface reconstruction.
They explicitly avoid the problem of parametrizing the space
of all scenes and giving priors on this space. Instead, they
quantify uncertainty for points in R

3 by analyzing in how
far a point agrees with locally weighted planes. In image
processing and computer vision Bayesian techniques are ve-
ry common, see e.g. [Sto96, KW99, WK01]. However, up to
now, to our knowledge, no complete 3D surface reconstruc-
tion technique from arbitrary point clouds has been exami-
ned. An technique very similar to ours has recently been pu-
blished by Diebel et al. [DTB06]: They propose a Bayesian
framework for the reconstruction of noisy triangle meshes.
Similar to our approach, they use a Gaussian error model in
conjunction with surface priors and perform numerical op-
timization to maximize the posterior probability of the mo-
del. The most important difference to our work is that their
technique assumes to be already given a triangle mesh from
which noise has to be removed. The topology and connec-
tivity of the mesh is not altered and must be known befo-
rehand. The priors are also slightly different: Instead of using

a mixed discrete/continuous model, Diebel et al. employ a
sub-quadratic normal potential that preserves sharp features.
This technique is motivated by differential statistics of na-
tural images and yields good results for a variety of natural
objects. The technique has the advantage of being able to
handle features of different sharpness; however, the sharp
feature information is not reconstructed explicitly so that it
cannot be used in further processing.

Other related techniques: Our technique has also been
inspired by additional techniques, such as the feature preser-
ving Marching Cubes variant of Kobbelt at al. [KBSS01].
Gumhold et al. [GWM01] extract edges from point cloud
data via a graph minimization on the neighbour-graph. The
point based representation has been motivated by the point-
based modelling approach of Szeliski and Tonnesen [ST92],
which they also apply to the problem of interpolation and ex-
trapolation of sparse 3D data in [STT93]. The definition of
priors via local linear transforms is similar to the point cloud
processing technique of Pauly and Gross [PG01].

3. Bayesian Reconstruction

In this section, we discuss the details of our Bayesian recon-
struction model. We assume that the following random ex-
periment is taking place. First, we assume that some original
scene S consisting of n points has been chosen for measure-
ment according to the probability density p(S). Then, a mea-
surement process deletes some of the original points, leaving
m ≤ n measured points D. Lastly, random noise is added to
the remaining points according to a density p(D|S). To in-
vert the measurement process in a statistical sense, we will
construct an estimate point cloud S̃ with size n ≥ m. Each
of the first m points will be associated with a point from
D, i.e. we assume they are distorted versions of the origi-
nal points. This means they affect p(S̃|D) both in terms of
the priors p(S̃) and the measurement model p(D|S̃). The re-
maining n−m points correspond to the deleted points; those
points are only controlled by the prior p(S̃). For initializati-
on, the additional points will be distributed close to measu-
rement points with probability inversely proportional to the
measurement sampling density. In case of larger holes, the
user may also place additional initial points to the data ma-
nually.

After this initialization, the algorithm tries to find the
reconstruction S̃ that maximizes the posterior probability
p(S̃|D) by numerical optimization. More specifically, we
will perform a (conjugate) gradient descent on the negative
log-likelihood

S̃MAP = argmin
S̃

(− log p(D|S̃)− log p(S̃)). (3)

This transformation into log-space is a standard technique; it
does not change the solution and makes handling easier (esp.
computing derivatives) and numerically more stable.
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Figure 1: The measurement er-
ror probability density has to be
mirrored for the reconstruction.

Figure 2: A minimal circle co-
verage of the plane is used to
estimate the point density.

Figure 3: Smooth-
ness prior: fonSur f

Figure 4: Smooth-
ness prior: fcurv

3.1. The Measurement Model

The measurement model p(D|S̃) must specify the probabi-
lity of a candidate reconstruction S̃ agreeing with measured
data D. If we assume that a measured point di has been crea-
ted from an original point si with measurement errors des-
cribed by a probability density pi(si + ∆x), the probability
density for the location of the reconstructed original s̃i is gi-
ven by pi(di −∆x), which is the mirrored error density (see
Figure 1; for symmetric distributions such as Gaussians, the
distribution is unchanged). Additionally, we assume that all
measurement errors are independent of each other, so that
log p(D|S̃) is merely the sum of the logarithms of all per-
point error densities.

In literature, there are several papers that analyze sen-
sor errors both analytically and empirically, see for exam-
ple [Cur97,LP99]. The model of choice depends strongly on
the scanning technique. While time-of-flight scanners could
for example be described by standard Gaussian distributions,
triangulation based scanners often show asymmetrically bia-
sed error distributions influenced by local reflectivity gradi-
ents [Cur97]. As sensor modeling is not the main topic of our
paper, we assume just a simple Gaussian model: Each point
is associated with a 3×3 covariance matrix, the expected er-
ror is assumed to be zero (unbiased measurement). Of cour-
se, any other smooth probability density could be employed
at this point. Using the independence assumption, we obtain
the following log-likelihood (omitting additive constants):

− log p(D|S̃) =
1
2

n

∑
i=1

(s̃i −di)
T Σ−1

i (s̃i −di) (4)

The resulting quadratic potential function is not very robust
in the presence of outliers. In order to limit their influence,
we limit the value of the quadric for each point to a user
defined constant, leading to a mixture of truncated Gaussians
and a uniform distribution with small density values.

3.2. Priors

Prior probabilities are the key to any Bayesian reconstructi-
on technique. They define what artifacts are considered noise
and thus what the reconstructed scene will look like. We as-
sume that the object consists of piecewise smooth patches

separated by sharp boundaries. Such a model is especially
useful for reconstructing scans of man-made objects; for na-
tural objects, other models such as the subquadric normal
distribution of Diebel et al. [DTB06] might be more appro-
priate. Our current set of priors consists of three main in-
gredients: Density priors, smoothness priors and priors for
estimating sharp features. We assume that all three are inde-
pendent of each other, leading to:

p(S) =
1
Z

pdensity(S)psmooth(S)pdiscrete(S) ·w(S) (5)

Z is a normalization constant, which is the integral over all
other factors over Ω = R

3n. In order to make this expression
integrable, we have to add a windowing function w, otherwi-
se the integral would be infinite. For w we can choose a box
function that is 1 inside a large bounding box containing the
scene and 0 outside, limiting the range in which we expect
to observe parts of the scene. This term mostly accounts for
theoretical soundness. In a practical implementation, it can
be omitted as the normalization of the probability density
does not have an effect and our algorithm and will never
attempt reconstructions far away from the scene. Next, we
discuss the different terms that describe the expected surface
properties:

Density priors: We want to obtain a reconstructed mo-
del which is well-sampled with a regular, constant sampling
density all over the surface. Therefore, we estimate the sur-
face area of the object by computing the sum of the area of
all circles in which the k-nearest neighbors of each point lie,
divided by k. This estimate will be recomputed at each itera-
tion of the numerical optimization to make the approxima-
tion more accurate. Given the surface area, we can estimate
the expected distance δ between two neighboring points: As-
suming locally flat surfaces, the well-known minimal circle
coverage in a plane (Figure 2) gives an estimate for an op-
timal packing of sample points. Next, we define a stocha-
stic potential pdist between all pairs of points that constrain
the distance: Within a neighborhood radius proportional to
the expected point to point distance, the probability density
has a local maximum at the desired expected point distance
while being lower otherwise. For points that are far away,
the probability remains constant (please note that the windo-
wing function will make this integrable over ΩS). Let Nδ(x)
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denote the set of all points in S within radius δ of the point
x. Then, we define the density prior as:

pdensity(S) =
n

∑
i=1

∑
i j∈N2δ(si)

pdist(si,si j ) (6)

The heuristic variant we use and which works well in prac-
tice is to only consider the 6 nearest neighbors of each point
si. The six neighbors are determined by finding the closest
points after projecting it into a local fitting plane, conside-
ring one closest point for each of six 60◦ cones around si
in this plane. We compare the distance towards these neigh-
bors with the beforehand determined optimal distance and
use the differences to determine the point in space that mini-
mizes the error. This discrete choice of neighbors makes the
probability function C0-continuous only (rather than C∞, as
Equation 6). However, this does not appear to be an issue for
our gradient-based optimization technique.

Smoothness: To quantify the smoothness of a surface, we
use a general technique based on a linear basis transforma-
tion: First, we fix the size for a local neighborhood of dia-
meter ε (typically about 20-40 points). We do not choose
the corresponding set of nearest neighbors but a geometri-
cally defined set to avoid different smoothness conditions
due to sampling variations. For all points in the neighbor-
hood Nε(si) of a point si, we compute a local coordinate fra-
me using a principal component analysis of the local point
cloud [GWM01]: The eigenvector with the smallest eigen-
value corresponds to the normal direction n while the two
others span tangential coordinates u,v. Then, we consider
all neighbors as a sparse heightfield in n direction over u,v.
Let u j , v j and n j be the corresponding (u,v,n)-coordinates
of the points from Nε(si).

We fix a set of basis functions {b j(u,v)} j=1...k and com-
pute a least square fit to the corresponding points by solving
the system of normal equations:
⎛
⎜⎝

〈b1,b1〉 · · · 〈b1,bk〉
...

. . .
...

〈bk,b1〉 · · · 〈bk,bk〉

⎞
⎟⎠

⎛
⎜⎝

c1
...

ck

⎞
⎟⎠ =

⎛
⎜⎝

〈b1,φ〉
...

〈bk,φ〉

⎞
⎟⎠
(7)

with

〈 f ,g〉 :=
|Nε(si)|
∑
j=1

f (u j,v j) ·g(u j,v j) ·ω f it(u j,v j)

and φ being a function that returns the n-coordinates of the
neighborhood points at their respective u,v coordinates. ω f it
is a weighting function that makes the solution continuous
with respect to movement of points in S. Both, Gaussian and
simple constant windowing functions lead to reasonable re-
sults.

The system of normal equations allows us to compute a
set of coefficients of basis functions ci, which will then be

used to describe the prior. In general, the linear transform
prior will have the following form:

plt(S) =
n

∏
i=1

exp(− f (c(si),N(si))) (8)

Here, c(si) denotes the vector of coefficients computed for
the neighborhood of a certain point si and f is an evaluation
function that assigns a negative log-likelihood to each set of
basis functions and their respective original points.

In order to quantify the smoothness of a surface, we
choose monomials of second order {1,u,v,uv,u2,v2} as ba-
sis functions and employ a weighted sum (with user cho-
sen weights) of two evaluation functions, fonSur f and fcurv,
as negative log-likelihood. The first describes how far the
points are away from the quadratic surface:

fonSur f =
|Nε(si)|
∑
i=1

((
k

∑
q=1

cqbq(u j,v j))−n j)
2 (9)

The second penalizes high curvature of the fitted patch by
computing the average squared norm of second derivatives
of the patch, which is:

fcurv = c2
1,1 +2c2

2,0 +2c2
0,2 (10)

where ci, j is the coefficient of basis function uiv j . The two
functions describe two different effects (see Figures 3 and 4):
If we penalize large curvature only, we still obtain noise with
frequency in the range above O(ε−1). On the average, the
cloud of noise lies close to a surface of low curvature. If we
only penalize the distance to the local polynomial approxi-
mation, the noise vanishes but the surface can show unde-
sired irregularities at a medium frequencies below O(ε−1).
We could think of using only one evaluation function f and
increasing or decreasing ε correspondingly. However, this
leads to excessive computational cost (increasing ε) or accu-
racy problems (decreasing ε), respectively. Instead, we use
a medium value for ε (corresponding to some 10-40 neigh-
bor points) and let the user choose a weighting parameter for
the curvature component to determine his prior expectations
concerning smoothness of the surface.

The concept of linear transforms of point neighborhoods
is rather general and could be used to describe many proba-
bilistic assumptions concerning local correlations between
points. For example, we could think of using a Fourier basis
to describe systematic rippeling errors of certain frequency
(which are typical for structured light scanners) in the pro-
babilities of the measurement model by assigning a large va-
riance to the corresponding Fourier coefficients.

3.3. Discrete Properties and Sharp Features

Up to now our framework only allows for the reconstructi-
on of smooth surfaces. However, in many applications it is
desirable to handle sharp features. This could be done by
modifying the evaluation function f , for example by using
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non-quadratic potentials [DTB06]. Nevertheless, there are
still many applications in which an explicit reconstruction
of these features is desirable. In our case, this is especial-
ly beneficial for the later conversion into a triangle mesh.
To generalize this framework, we assign each point si of the
original scene (and thus of its Bayesian reconstruction) a set
of discrete attributes in addition to the continuous attribu-
tes. To estimate the discrete attributes, an accurate know-
ledge of the continuous attributes would be beneficial. Ho-
wever, the discrete attributes themselves influence the esti-
mation of the continuous attributes. A general technique to
deal with this kinds of problems is expectation maximiza-
tion [DHS01]: The algorithm iteratively estimates the pro-
babilities for the assignment of the discrete and continuous
attributes in turn, using the estimate from the previous stage
to improve the estimate of the corresponding other attribute
set. For our sharp feature model, we use a simplified proce-
dure inspired by this technique.

We employ the following discrete attributes per point: A
type attribute which determines whether a point belongs to
a region (smooth patch), an edge (border curve between re-
gions) or a corner (where two or more edges meet), and an
ID-number to identify the corresponding entity. We assume
that smooth regions are always separated from each other
by edges. This assumption makes the estimation task easier;
however it also limits the algorithm to models without sharp
features within one and the same region.

We augment our statistical model accordingly: We assume
that the original model S provided all the discrete attributes,
which were unfortunately lost during measurement. Howe-
ver, we have some general, a priori knowledge about the as-
signment of these attributes: The probability for being an ed-
ge point grows with the curvature of the local neighborhood.
We could for example use the same fcurv evaluation functi-
on to quantify this probability (our current implementation
uses the simpler PCA-based estimate of [GWM01]). Corre-
spondingly, the probability for being a corner point depends
on the number of edge points from different edges (diffe-
rent IDs) in the neighborhood. This defines probabilities for
being a candidate for an edge or corner point but does not af-
fect the shape. To define the effect on shape, we restrict the
neighborhoods used for the other priors (smoothness, densi-
ty) to points within the same region (edge points belong to
both adjacent regions). Additionally, and this is very import-
ant for good results, we also impose priors on the shape of
edges: In analogy to the region priors, we also demand uni-
form sampling (by looking at the distance towards the two
neighbor edge points and defining corresponding pairwise
probabilities) and smoothness (by applying the same mea-
sures as outlined in the previous subsection, but now locally
fitting a polynomial curve of 2nd order to the set of edge
points). Finally, we assume that corner points can only exist
with points with two or more different edge-IDs in their ε-
neighborhood, that the number of corner points in such a
neighborhood is exactly one and assume a probability distri-

bution for its position that peaks at the point were regression
lines for all edges are closest to each other.

In addition to these attributes, we also employ a type at-
tribute for each region; it can be locally polynomial or pla-
nar. In the first case, the prior probabilities are employed as
described before. In case of plane-regions, the smoothness
priors are replaced by a simpler prior that attracts the points
to a single plane, constant for the complete region. The pro-
bability for choosing the plane attribute for a region depends
on the least-squares error when fitting to one global plane
(with user define allowable variance). Given the probabili-
stic model augmented by discrete attributes, we are looking
for an S̃ that maximizes the overall probability.

The resulting mixed discrete-continuous optimization
problem does not seem to lend itself to an optimal soluti-
on with reasonable computational efforts. Thus, we employ
a heuristic approximation strategy, as described at the end of
the next section.

4. The Reconstruction

In this section, we describe the employed optimization tech-
nique for finding an approximate MAP-reconstruction (see
Figure 5).

Initialization: We initialize the estimate of the recon-
structed point cloud S̃ with original measurement points D.
The additional n−m points are distributed randomly in the
neighborhood of the points from D, with probability inverse-
ly proportional to the local sampling density in D. We esti-
mate the sampling density by the inverse of the averaged
distance towards the nearest neighbors in each of the six 60◦
cones (the same as used for the density priors, see Secti-
on 3.2). An exact knowledge of the sampling density is of
minor importance as points will be redistributed by the den-
sity prior later on. We have also implemented an interactive
tool for semi-automatic hole-filling where the user can click
on a set of border points and additional points will be distri-
buted within the convex hull of the selection.

Numerical Optimization: First, we try to maximize the
a posteriori probability neglecting the discrete components
of our model. This is done by numerical descent: We com-
pute the gradient of the posterior probability P(S̃|D) for the
candidate point cloud S̃ with respect to the positions of all
of its points and perform a gradient descent. We have imple-
mented three different techniques: simple gradient descent
with manually chosen, fixed sized steps, gradient descent
with automatically chosen step size, and conjugated gradi-
ent descent [She94, DTB06]. For the two latter techniques,
the step sizes are chosen by fitting a one dimensional parabo-
la to the objective function in gradient direction to perform a
quasi-Newton line search; in case of divergence, the step size
is automatically reduced or even inverted [DS96, She94].

In order to perform this optimization, it is crucial to com-
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(a) Noisy input point
cloud.

(b) Initial smoothing. (c) Estimating edge
probabilities.

(d) Smoothing with
discrete attributes.

(e) Triangulation of
the reconstruction.

Figure 5: The sequence (a-e) of reconstruction steps in an example dataset (carved object)

pute the gradients of the posterior analytically. Besides in-
stabilities, a numerical estimation would cause a significant
computational overhead (for example, the least squares fit
had to be repeated for each point within each neighborhood).
Consequently, our model was chosen to allow for an easy
gradient computation: the measurement likelihood P(D|S̃)
(Equation 4) is a simple quadric with gradient 1

2 Σ−1x. For
the linear transform priors, we restrict the movement of
points in each neighborhood to the normal direction, i.e. we
only compute the partial derivatives of equations 9, 10 with
respect to ni. This turned out to yield more stable results in
practice. The second derivatives for the line search algorithm
are currently estimated numerically.

Discrete Optimization: The discrete optimization proce-
dure builds on top of the continuous optimization. First, we
perform a run of the continuous optimization, neglecting the
discrete attributes. In this pass, we set the influence of the
curvature penalty term in the priors to zero as its smoothing
effect contradicts the estimation of edge probabilities. After
convergence of the optimization, we start assigning proba-
bilities for being an edge point to points of high curvature.
Afterwards, we start a region growing algorithm on an ε-
neighborhood graph of the point cloud for non-edge points
and assign a unique region ID to each such point. The graph
traversal is stopped by points that show a significant proba-
bility of being an edge, i.e. where the estimated curvature
exceeds a user-defined threshold. For each point that has not
been assigned to a region yet, its distance to an extrapolati-
on of the adjacent regions is used to decide which region it
belongs to. Points that lie on the border between adjacent re-
gions are labeled as edges. This labeling step yields a rough
and still noisy estimate of edges. Thus, we run a second pass
of continuous optimization, enforcing smoothness priors on
edges (and activating the curvature prior that has been deac-
tivated before). This step optimizes the position of edge, re-
gion and corner points to (locally) maximize the model like-
lihood given the discrete attributes. The discrete/continuous
estimation process could be iterated to refine the model; ho-
wever, to our experience, one such iteration is sufficient as
we already converge to a local optimum.

5. Triangulation

The final step is to create a triangle mesh from the point
cloud, which might be a preferable representation for some
applications. After having reconstructed a well-sampled and
almost noise free point cloud, this is not very complicated
any more: Meshing is done with an implicit surface recon-
struction scheme, similar to the original algorithm of Hop-
pe et al. [HDD∗92]. We just augment the algorithm to ma-
ke use of the sharp feature information we obtain from the
point cloud reconstruction. First, triangles are created using
a marching cubes algorithm on a signed distance function
defined by normals that are estimated from nearest neigh-
bours in the reconstructed point cloud. An individual signed
distance function is defined for every region in order to pre-
serve the reconstructed features. To increase the stability of
this step, we employ a variant of the MLS-function proposed
in [SOS04] with a small, cube-sized Gaussian weighting ker-
nel. Then the marching cubes algorithm is executed several
times, once for each region located near the actual cube. This
produces overlap at the edges. To clean this up, the resulting
triangles for each region are clipped to an approximating pla-
ne of the points from all other regions. In the resulting mesh
there are small gaps between two regions caused by the cut-
ting process. Closing the mesh is done by snapping to close
edge vertices. The correspondence of matching vertices can
be determined by tracking the region IDs of the triangles and
clipping planes.

6. Results

We have implemented the reconstruction algorithm within
the framework of a scanner data processing software. The
range queries for determining a local ε-neighborhood or the
k-nearest neighbors, respectively, have been implemented
using a hierarchical query algorithm on an octree-based da-
ta structure. The implementation has been done in C++; all
experiments have been conducted on a system with an AMD
Athlon 64 3500+ processor and 2 GB of RAM. Using the
prototype, we have examined different aspects of the algo-
rithm:

Noisy 3D models: We have applied the algorithm to a set
of synthetic 3D models. The original triangle meshes we-
re converted into point clouds by uniform random sampling
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and Gaussian noise of varying amplitude has been added. Fi-
gure 5 shows a test data set similar to that used in [FCOS05]
with 2% noise added. The algorithm reconstructs both pla-
nar and curved surface regions and edges, the noise is not
visible in the final reconstruction. We have also applied the
algorithm to the standard fandisk benchmark scene (Figu-
re 6). Again, the algorithm removes the noise and correct-
ly reconstructs all sharp edges except one sharp edge at the
back of the data set (Figure 6c): This edge cannot be detected
by our approach because it ends in the middle of a smooth
region; hence the current region growing approach does not
recognize it.

Different noise levels: Next, we have varied the level of
noise and recomputed the reconstruction. Figure 8 shows the
reconstruction results for a simple box scene and a variant of
the well-known mechanical part data set from [HDD∗92].
For very large noise levels, our current curvature-based edge
detector is not able to reliably detect edges anymore. Ne-
vertheless, a reasonable smooth surface is reconstructed in
these cases. This shows that the combination of discretized
smoothness and density priors still converges to smooth sur-
faces for unfavorable initial estimates with large variance in
the measurement model. However, the topology and discrete
features may be reconstructed incorrectly. Please note that
the local feature size value ε and the curvature threshold had
to be chosen manually and separately for each case. This is
the case for all data sets, these two main parameters have
to be determined by the user, they are currently not inferred
automatically. The other parameters worked for all data sets
without manual intervention.

Holes: The algorithm has not specifically been designed
for hole filling. However, holes smaller than the ε-parameter
are filled automatically by the density prior. Slightly larger
holes can be handled by enlarging ε during the initialization
phase of the algorithm. The result can be seen in Figure 7.
For larger holes, the user can insert support points inside the
hole manually. This allows to remove at least minor defects
from scanned data sets (Figure 9).

Real-world scenes: We have also applied the algorithm to
two real-world scenes from range scanners (assuming a uni-
form Gaussian error model). Figure 9 shows the reconstruc-
tion of a scanned face from a structured light scanner. Mea-
surement noise has been smoothed out. However, the sharp
feature reconstruction is less useful for such natural object
scenes. Finally, we have also reconstructed an architectural
model, a part of the floor of our department acquired with a
mobile time-of-flight scanner. Here, the algorithm automa-
tically reconstructs all important features (walls and doors,
see Figure 10).

Numerical optimization: We have applied three vari-
ants of gradient descent: Simple, fixed step-width, adaptive
step width and conjugated gradients (also with automatical-
ly chosen step width). The adaptive and conjugated gradient
techniques needed significantly fewer steps for convergence

# Data # Rec. Rec. time
points points [sec]

Box 2000 4506 28
Holes 4,790 31,717 271

Mechpart 9,521 104,578 1,759
Carved Object 9,973 41,911 269

Face 19,995 300,000 3,772
Fandisk 46,494 216,338 3,881
Floor 199,970 811,352 1,540

Table 1: Computation time and model complexity.

than the non-adaptive version. In our experiments, the CG-
method showed by far the best performance when applied to
purely quadratic problems it has been designed for. Howe-
ver, in the reconstruction settings, the number of steps have
been comparable to non-conjugated, adaptive gradient de-
scent. A problem is, however, that the two adaptive methods
need several evaluations of the objective function per step.
As the result, they are currently slightly slower than the very
simple gradient descent technique. This problem could pro-
bably be fixed using analytically computed 2nd order line
derivatives. As currently being the fastest, all running times
have been measured using simple plain gradient descent.

Running time: The overall running time for the test sce-
nes is given in Table 1. In comparison with local reconstruc-
tion techniques such as MLS, the running times are signifi-
cantly longer, as we optimize a global statistical model. The
most expensive part is the numerical optimization. For ex-
ample, for the fandisk data set, the initial smoothing took
691 sec., initial edge estimation 148 sec., and the second
smoothing step 3042 sec. The second step is more expen-
sive because more priors are evaluated and more iterations
are performed for final convergence. The final triangle mesh
reconstruction took 102 sec for a 2003 grid.

7. Conclusions and Future Work

In this paper, we have presented a surface reconstruction
technique from noisy point clouds based on Bayesian sta-
tistics. The main idea is to perform a search for a local maxi-
mum of posterior probability in the space of all possible re-
constructions, which are parameterized as point clouds, i.e.
as points in the high dimensional space R

3n. It turns out that
the approach works quite robustly in practice and allows to
reconstruct models of general, a priory unknown topology
and remove noise artifacts while preserving and explicitly
reconstructing sharp features. The resulting representation
lends itself for a straightforward conversion into a triangle
mesh, preserving the explicit sharp feature information. The
main limitation of our current technique is the reconstruction
technique for the sharp features. The edge probability being
based on curvature estimates does only work if the noise le-
vel is smaller than the curvature threshold that distinguishes

c© The Eurographics Association and Blackwell Publishing 2006.



P. Jenke & M. Wand / Bayesian Point Cloud Reconstruction

(a) Original data (b) Reconstructed
point cloud

(c) Reconstructed
edges

(d) Final mesh

Figure 6: Reconstructed fandisk data set

(a) Original data (b) Reconstruct-
ed point cloud

(c) Final mesh

Figure 7: Data set with small holes

(a) 1% noise (b) 8% noise (c) 12% noise

(d) 1% noise (e) 2% noise (f) 8% noise

Figure 8: Reconstruction for different noise levels (Gaussian noise, standard deviation relative to bounding box size)

(a) (b) (c) (d)

Figure 9: A scanned face: original data (a), reconstruction
(b), manual initialization (c), triangulation (d)

(a) Original data (b) Reconstruction (c) Topology

Figure 10: A building scan

the edges. In future work, we would like to work on a more
elaborated statistical model. A promising research directi-
on is also the investigation of alternative priors, for example
transformations to other linear function systems such as the
Fourier basis. We are currently working on a statistical mo-
del based on self-similarity in order to fill large holes mo-
re meaningfully. Another interesting direction could be an
application to time-variant data, by adding additional priors
on time-dependent scene behavior. Finally, several techni-
cal aspects could be improved, such as employing a higher
order numerical optimization scheme, which could improve
the computation time significantly.
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