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Abstract
We present a new output-sensitive rendering algorithm, the ran-
domized z-buffer algorithm. It renders an image of an arbitrary
three-dimensional scene consisting of triangular primitives by
reconstruction from a dynamically chosen set of random surface
sample points. This approach is independent of mesh connectivity
and topology. The resulting rendering time grows only logarith-
mically with the numbers of triangles in the scene. We were able
to render walkthroughs of scenes of up to 1014 triangles at interac-
tive frame rates. Automatic identification of low detail scene
components ensures that the rendering speed of the randomized z-
buffer cannot drop below that of conventional z-buffer rendering.
Experimental and analytical evidence is given that the image
quality is comparable to that of common approaches like z-buffer
rendering. The precomputed data structures employed by the
randomized z-buffer allow for interactive dynamic updates of the
scene. Their memory requirements grow only linearly with the
number of triangles and allow for a scene graph based instantia-
tion scheme to further reduce memory consumption.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]:
Picture/ Image Generation – Display Algorithms; I.3.6 [Computer
Graphics]: Methodology and Techniques – Graphics data struc-
tures and data types; G.3 [Mathematics of Computing]: Probabil-
ity and Statistics – Probabilistic algorithms.

Keywords: Rendering Systems, Level of Detail Algorithms,
Monte Carlo Techniques

1 INTRODUCTION
Although the capabilities of computer graphics hardware have
dramatically increased in the past years, the handling of scene
complexity is still one of the most fundamental problems in com-
puter graphics. Interactive display of highly complex scenes like
landscapes with extensive vegetation, large city models, or highly
detailed datasets in scientific visualization are a major challenge
for rendering algorithms.

To be able to render highly complex scenes at interactive
frame rates, the running time of the rendering algorithm has to be
output-sensitive. Analogous to Sudarsky and Gotsman [26], we
consider a rendering algorithm output-sensitive if its time com-
plexity depends only weakly on the complexity of the input scene.
Classic algorithms, like the z-buffer algorithm, fail to meet this

requirement because their running times grow linearly with the
number of elementary objects in the scene [26]. Although sophis-
ticated hardware implementations are available, these algorithms
are not capable of displaying highly complex scenes in real-time.

In this paper, we present a new output-sensitive rendering al-
gorithm, the randomized z-buffer algorithm. The main idea of the
algorithm is to generate an image of a scene by reconstructing it
from a dynamically chosen set of random surface sample points.
The sample points represent the complex scene geometry, hence
not every single triangle must be handled separately during ren-
dering. In a first step, random sample points are chosen so that
they cover the projections of objects in the image plane approxi-
mately uniformly. This can be done in highly output-sensitive
time. Here, the randomized selection is the key to avoid expensive
geometric queries. In a second step, the algorithm reconstructs the
occlusion between the chosen sample points and renders the
resulting image using the visible points. Our approach has the
following main advantages:

Efficiency: The rendering time for a scene consisting of n
triangles covering an on-screen projected area of a pixels (includ-
ing occluded triangles) is O(a·log n). The logarithmic growth of
the rendering time in n permits rendering of highly complex
scenes. An automatic fallback strategy to conventional z-buffer
rendering for low detail scene components insures that the render-
ing speed cannot drop below that of conventional z-buffer render-
ing. A caching strategy for sample sets is used to make optimal
use of accelerated graphics hardware. Using a prototype imple-
mentation, we are able to render walkthroughs of scenes consist-
ing of up to 1014 triangles at interactive framerates. The algorithm
uses O(n) storage and O(n·logn) precomputation time. In order to
store highly complex scenes in main memory, we adopted a scene
graph based hierarchical instantiation scheme [29].

Generality: The algorithm takes arbitrary models consisting
of triangles as input. Rendering times and results are independent
of the input topology. Arbitrary local illumination models can be
used to define the surface appearance.

Image quality: We will give analytical and experimental evi-
dence that the image quality is comparable to conventional
rendering results for a broad range of input scenes, covering most
models found in practical applications.

Interactive editing: The data structures used for the selection
of sample points allow for efficient dynamic updates: Insertion
and removal of an object can be handled in O(t) time where t is
the height of an octree built for the objects in the scene. This per-
mits interactive update times for local modifications of the scene.

The remaining part of this paper is organized as follows: The
next section gives an overview on the randomized z-buffer algo-
rithm. In Section 3, we briefly review related work. Afterwards,
the two main steps of the algorithm, image reconstruction (Sec-
tion 4) and sample point generation (Section 5), are discussed in
detail. The image reconstruction is described first because it sets
the preliminaries for the point selection scheme. In Section 6, the
total running time of both steps is determined. Section 7 describes
the automatic invocation of conventional z-buffer rendering,
sample caching, and scene graph based scene encoding. Results
are discussed in Section 8. The paper concludes with some ideas
for future research.
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2 OUTLINE OF THE ALGORITHM
We assume that a scene S ⊆ 3 consisting of n triangles is given
together with a shading function which determines the color for
each point in S and which can be evaluated in O(1), independent
of the scene complexity. The shading function may depend on the
current viewpoint and global lighting settings. This includes e.g.
Phong shading, texture and environment maps. For each frame, a
planar perspective projection is given.

The randomized z-buffer rendering algorithm consists of two
main steps: choosing sample points and image reconstruction
(Figure 1).

Choosing sample points: An efficient algorithm for choosing
sample points is the key to achieve interactive frame rates. We
introduce a new randomized technique which efficiently generates
a point sample representation of the scene on-the-fly, according to
a given observer. To enable the correct reconstruction at a uni-
form resolution for all parts of the image, the sample points
should be distributed uniformly on the projections of the objects
in the image plane. Thus, for choosing sample points, a probabil-
ity density proportional to the projected area of the surfaces of the
objects has to be used. However, a sample selection using this
viewpoint-dependent probability density does not seem to be
possible in sublinear time. Therefore, we use an approximation
algorithm. In a preprocessing step (Figure 1, (1)), the scene is
subdivided into a hierarchy of groups of triangles which show a
similar scaling factor during projection (projection factor). For
each viewpoint, a suitable set of groups is chosen dynamically
from the hierarchy (2). The maximum projection factor is esti-
mated to determine the number of sample points to be chosen
from each group: In most cases, it is sufficient to consider only
the distance between a group and the viewer in order to estimate
the projection factor. In special cases, better results can be
achieved by additionally taking into account the orientation of the
triangles. The sample points are then chosen within a specific
group according to the unprojected area of the triangles (3) using
precomputed search structures. We can show that this approxima-
tion does not harm the image quality and that the time for extract-
ing groups from the hierarchy is short for "average" scenes, i.e.
scenes with uniformly distributed surface normal vectors.

After a set of sample points has been chosen for a group of
objects, they are stored in a sample cache to minimize sample
selection costs. The sample points are reused for subsequent
frames as long as the required sampling density does not change
significantly. Since sampling of a triangle with large projected
area turns out to be more expensive than rendering using the
conventional z-buffer algorithm, we identify triangles with large
projected area in our group selection scheme (1), (2) and render
them using the conventional algorithm (4). Only triangles with
small projected area will be replaced by sample points. This fall-
back strategy guarantees that the rendering speed cannot drop
below that of the conventional z-buffer algorithm in any case.

Image reconstruction: To reconstruct an image from the
sample points, the occluded points have to be removed from the
sample set first (5). Afterwards, the image is obtained by interpo-
lation between the visible sample points (6). Both can be done in

one step by drawing the sample points into a z-buffer. If the sam-
ple density is high enough so that every pixel in the image re-
ceives a sample point from a foreground object the occlusion in
the scene will be reconstructed correctly.

Using a visibility splatting approach similar to [18], the recon-
struction can be adjusted both in quality and speed. Using larger
splats of constant color and depth accelerates the reconstruction.
High quality results can be obtained by weighted averaging of
visible sample points using Gaussian filters. In this way, noise and
aliasing artifacts can be avoided on the expense longer, non-real-
time reconstruction times.

3 RELATED WORK
A large number of approaches have been proposed to handle high
scene complexity in interactive applications:

Multi-resolution modeling: The objects of the scene are
stored in different levels of detail (LOD). The appropriate LOD is
chosen during rendering according to a view-dependent error
metric. LODs can be generated automatically using mesh-
simplification-algorithms (see e.g. Puppo et al. [20] for a survey).
However, some scenes like scenes of complex topology cannot be
simplified further without damaging the overall appearance. A
forest consisting of many trees with hundreds of branches and
leaves is an example of a scene which typically does not permit
sufficient simplification.

Image-based rendering: Another approach to reduce the
complexity of a scene is image based rendering. These techniques
can be used to substitute fixed complexity representations derived
from image data for objects of higher complexity. A large number
of approaches were proposed which can be subdivided into two
groups: The first group uses precomputed data structures, e.g. [24,
12, 15]. They differ from each other in generality, utilization of
geometrical information, and memory requirements. A common
limitation of all these methods is that the maximum image quality
available is bounded by the resolution of the data, which is fixed
in advance. Additionally, the illumination of the stored objects is
fixed as well. In contrast to our approach, efficient dynamic scene
modifications are not possible. The second group of image based
data structures acquires their content dynamically, similar to the
caching strategy used in our algorithm. In [25, 23], image caches
are acquired by rendering parts of the scene using the conven-
tional z-buffer algorithm. Thus, the cache update costs depend
highly on the scene complexity. In contrast, the running time of
our approach depends only logarithmically on the number of
triangles in the scene.

Point sample rendering: Point sample approaches, like our
algorithm, construct an image out of a set of surface sample
points. This makes them independent of the input topology, over-
coming the main problem of triangle mesh based multi-resolution
models. The idea of using point samples to render surface models
was first applied to the display of smooth three-dimensional sur-
faces by Levoy and Whitted [16], who already mentioned the
possibility of using random sampling to obtain sample points.
Earlier work focused on the display of non-solid objects like

Figure 1: Outline of the algorithm. The randomized z-buffer dynamically chooses sample points from the scene (2, 3) using precomputed data
structures (1). Afterwards, an image is reconstructed out of the sample points (5, 6). Low detail scene components are handled separately (4).
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clouds, fire, or smoke [4, 7, 21]. Chamberlain et al. [5] render
complex scenes using boxes of small projected size taken from a
spatial hierarchy. The boxes are colored with averaged colors and
transparency values of their content. Grossman and Dally [14]
render complex object from point samples obtained from ortho-
graphic views of the object using a hierarchical push-pull algo-
rithm for image reconstruction.

Two recent methods employ a multi-resolution point sample
representation for rendering similar to our approach: Rusinkiewicz
and Levoy [22] describe a rendering method for rapid display of
large meshes from range scanner data dubbed QSplat. A bounding
sphere hierarchy is built upon surface sample points storing aver-
age surface attributes such as normals and colors in every node.
For rendering, the hierarchy is traversed until the projected size of
a sphere falls below a certain threshold. Then splats are drawn on
the screen with colors calculated from the averaged attributes and
sizes according to the bounding spheres to avoid holes. Pfister et
al. [18] converts the scene geometry into a point sample represen-
tation (surfels) by building a hierarchy of layered depth images
[24]: For each node of an octree, point samples are generated by
raytracing the objects in a fixed resolution from three orthogonal
directions. For each sample point, position and surface attributes
are stored. During rendering, an interpolation between adjacent
levels in the octree is used to perform anti-aliasing.

A drawback of both methods is that the point sample
representation used for display has to be built in a preprocessing
step at a fixed resolution. The image quality available is then
always bounded by the maximum sampling density of the point
samples generated a priori. In order to obtain a good image qual-
ity even from close viewpoints, a large amount of memory must
be spent to store a sampled representation of fine granularity. This
is especially a problem if the level of detail varies across the scene
as the sampling density is not adapted to the size of the underlying
primitives. Thus, large triangles unnecessarily use up large
amounts of memory.

Since our algorithm generates sample points on-the-fly from
the original geometric scene description, the scene can be ren-
dered from arbitrary viewpoints with constantly high quality using
guaranteed O(n) storage for n triangles. Due to the selection over-
head and the oversampling factor caused by the randomization,
on-the-fly generation of sample points is slower than rendering
precomputed point sets. We use a sample caching scheme to avoid
this overhead: Sample sets with low oversampling ratio are con-
structed dynamically and can be reused for several frames. For
views of a scene containing triangles with a large projected area,
the automatic usage of conventional z-buffer rendering leads to an
even better performance than purely point sample based render-
ing. In contrast to QSplat and Surfels our scene representation
allows for efficient dynamic insertion and removal of objects.
Thus, it can be used in a wider range of applications like interac-
tive scene editing.

Raytracing: The raytracing algorithm [1] can be accelerated
by a number of techniques to achieve rendering times with sublin-
ear growth in respect to the number of objects in the scene. Com-
monly used methods are based on volume hierarchies, especially
octrees, and regular grids [2]. Their effectiveness depends on the
number of cells which have to be visited before a ray-object inter-
section is found. There are techniques from computational geome-
try, which guarantee to find intersections in logarithmic time (in
respect to the number of objects) [8]. However, precomputation
times and memory demands are prohibitive for large scenes. The
randomized z-buffer circumvents the expensive inverse problem
of finding ray intersections by placing sample points in object
space. The disadvantage of this approach in comparison to ray-
tracing is that the algorithm cannot resolve occlusions before

rendering, which leads to a linear growth of the running time with
the projected area (including occluded area).

Occlusion culling: Several algorithms have been proposed to
avoid the handling of occluded parts of the scene by the rendering
algorithm, see e.g. [13, 27, 30]. Our algorithm currently does not
perform any occlusion culling, but view frustum culling only. We
believe that occlusion culling and simplification, i.e. the removal
of unnecessary details, are orthogonal problems and our algorithm
concentrates on a solution to the simplification problem. How-
ever, the integration of many of the known occlusion culling
techniques into our algorithm would be straightforward.

4 IMAGE RECONSTRUCTION
We start the description of the randomized z-buffer algorithm
with the image reconstruction step. It is described first because it
sets the preliminaries for the sample selection strategy depicted in
Section 5.

We assume that a set of sample points is given which were
chosen randomly, independently, and uniformly distributed on the
projections of the objects in the image plane. This enables a re-
construction at a uniform level of detail for all parts of the image.
We will describe and analyze the basic reconstruction technique
in Section 4.1. Section 4.2 describes a generalization to a splatting
algorithm which permits a more flexible trade-off between image
quality and reconstruction speed.

4.1 Per-Pixel Reconstruction
The per-pixel reconstruction algorithm takes all sample points in
arbitrary order, projects them onto the image plane, and draws
them as pixels using a z-buffer to resolve occlusions.

To analyze the correctness of this method, we need a defini-
tion of a correct image first: We assume without loss of generality
that every pixel is fully covered by triangles. An image is consid-
ered a correct image of the scene if every pixel of the image
shows a color which can be found on any triangle fragment visible
through that pixel. This definition of correctness merely abstracts
from the slightly different behavior of rendering algorithms such
as raytracing or z-buffering in handling sub-pixel details.

To obtain a correct image in the sense of this definition by
per-pixel reconstruction, every pixel must receive at least one
sample point from a foreground area. Additionally, one of the
foreground points must have the smallest depth value among all
sample points so that it will overwrite all other sample points in
the z-buffer and produce a correctly colored pixel.

We now proceed in two steps. In the first step, we show how
many sample points must be chosen so that every pixel receives at
least one sample point from a foreground area. In the next step,
we identify the conditions under which such a point will also be
the point with the smallest depth value.

4.1.1 Number of Sample Points
In this section, the number of sample points which must be chosen
to guarantee that every pixel receives at least one point from a
non-occluded triangle fragment is determined.

First, we assume that there are no hidden surfaces in the im-
age. As every pixel is by definition fully covered by visible sur-
face fragments, the problem can be regarded as a simple urn
model: Given v bins, how many balls must be thrown randomly,
independently, with equal probability into the bins until every bin
has received at least one ball? v is the number of “visible” pixels,
i.e. the resolution of the image in pixels. Motwani et al. [17]
shows that the expected value for the number of balls is v·Hv with
Hv as v-th harmonic number, which is equal to lnv up to ±1. They
show further that this result is asymptotically sharp so that one
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can conclude that O(v) additional balls are sufficient to fill every
bin with arbitrary probability.

To take into account occlusions, we model the process as a
two steps random experiment: Let h be the projected area of
occluded surfaces measured in pixels and let a := v+h be the total
amount of projected area (these values will be estimated by the
sample selection algorithm later on). The occluded area is now
represented by h additional bins that are chosen with the same
probability as the other v bins. Using a normal approximation to
the binomial distribution, it can be shown that a·lnv + O(a) sam-
ple points are sufficient to guarantee that every pixel receives at
least one sample from a visible object fragment with arbitrarily
high probability [28]. Experiments show that the absolute value of
a·lnv sample points is a good choice in practice. This delivers a
sufficient sample density and decreasing the value by a small
factor leads to “holes” in the surfaces. The oversampling factor
ln v is caused by the randomization: For typical resolutions, on the
average about 11-14 samples per pixel of projected area are nec-
essary to guarantee that the projected surfaces are fully covered
by sample points.

4.1.2 Correctness of the Image
Even if every pixel receives at least one sample point from a
visible triangle fragment, in some cases pixels might show incor-
rect reconstructions. We distinguish two possible cases of sub-
pixel occlusion:

1. non-overlapping depth: The maximum depth value of any
visible triangle fragment is smaller than the minimum depth value
of any occluded fragment in the pixel considered (Figure 2a). In
this case, the point sample with the smallest depth value must
stem from a visible triangle fragment and thus we always obtain a
correct reconstruction.

2. overlapping depth: If the depth intervals of visible and hid-
den fragments overlap, a wrong reconstruction of occlusion is
possible because the sample point with the smallest depth value
might belong to an occluded triangle fragment. Such a point could
incorrectly overwrite the sample points from visible areas. There
are two typical cases: One possibility is that the pixel shows an
object boundary or a sub-pixel detail in front of a background
with higher depth. Figure 2b shows such an example: It is possi-
ble that sample points of region C overwrite all sample points of
region B and no points from region A are available because it is
only guaranteed that at least one sample is chosen from any visi-
ble triangle fragments of the pixel. Although formally the image
can be incorrect, no significant loss of image quality is observed
since this situation leads only to slightly "fuzzy" object bounda-
ries.

Another typical situation is shown in Figure 2c: Two parallel
surfaces, which are not perpendicular to the view direction, lie in
very close proximity to each other. If the depth intervals of the
surfaces are similar, the hidden surface B might shine through A
with up to 50% probability since sample points from surface A

and B are taken from nearly the same depth interval and show
minimum depth with roughly equal probability. This problem can
occur if offset polygons are used to model surface details. How-
ever, the problem can only be observed in practice if the relative
distance of the surfaces is extremely small such that even a con-
ventional z-buffer renderer tends to show occlusion artifacts due
to its limited depth precision. The problem can easily be avoided
by converting offset polygons into textures or removing the back-
ground underneath in the input model, as done in our example
scenes. Thus, it is no restriction in practice.

4.2 Splatting
The per-pixel reconstruction algorithm presented in the preceding
section is sometimes too expensive to run at interactive frame
rates. A simple method for reducing the rendering costs is to use
splatting: Instead of drawing single pixels, larger quadratic re-
gions with side length d are filled with the same color and depth
value, performing a depth comparison on each pixel. This reduces
the size of the sample set necessary to safely cover all foreground
area by 1/d2. Of course, the image quality drops off with increas-
ing d (Figure 3). However, the results are always much better than
those obtained by a simple reduction of the resolution by a factor
d. We found that values of d ≈2..5 are a good compromise. Using
a value of d=2 provides a good image quality even for scenes
with high frequency details, saving about 75% computation time,
while higher values may lead to objectionable visual artifacts.

To obtain reconstructions of higher quality we use splatting
only to delete hidden sample points. Similar to [6], we then fill the
image using a weighted average of adjacent visible points using
Gaussian weighting functions (see [28] for details). We have to
use a large sample size (about ten times the size for a per-pixel
reconstruction) to avoid the low frequency noise artifacts which
are emphasized by the filtering [11] so that this technique is not
suitable for real-time applications.

5 EFFICIENT SAMPLE GENERATION
The objective of this section is to develop an algorithm for effi-
ciently choosing sample points. The key observation for an effi-
cient solution is that it is not necessary to guarantee an exactly
uniform distribution of the sample points on the objects on the
image plane. The image reconstruction will not fail if parts of the
image contain too many sample points; these just cause additional
processing costs. It must only be ensured that the sample density
does not fall below the ideal sampling density anywhere. The
running time of the reconstruction algorithm will then be in-
creased proportional to the overestimation of the projected area.
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Figure 2: Different occlusion situations: (a) non-overlapping depth,
(b) overlapping depth at object boundaries, (c) overlapping depth at

parallel surfaces.

Figure 3: “Happy Buddha” mesh: Randomized z-buffer renderings
with different splat sizes d in comparison to a conventional z-buffer

rendering (leftmost): For small splat sizes the results are almost
indistinguishable from the conventional z-buffer rendering.
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We will now present such an approximation algorithm and show
that the additional costs are small under reasonable assumptions
about the scene geometry.

5.1 Probability Distribution
To obtain the probability density function for the selection of
sample points, we consider an infinitesimal small surface frag-
ment s and derive the projection factor, prj(s), by which it is
scaled when it is projected on the image plane. The projection
factor for such a surface fragment s is given by
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z denotes the distance to the center of projection, measured or-
thogonal to the projection plane, β denotes the angle between the
surface normal and a vector to the center of projection, and α
denotes the angular deviation from the central view direction
(Figure 4). cut[0,1] denotes clamping the value of the cosine to the
interval [0,1]. This accounts for backface culling. As sampling
density, we use the following probability density function f, which
describes a uniform distribution on the projections of the surfaces
on the image plane.
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S denotes the set of all triangles of the scene. The function clip is
defined to be 1 inside the current view frustum and 0 outside to
limit the distribution of sample points to the area (potentially)
visible from the current viewpoint. The view frustum is especially
limited by a near clipping plane to exclude the singularity of the
projection factor for z = 0.

5.2 Distribution Lists
We start the description of the sample selection process assuming
that all projected area values of the triangles are known in ad-
vance. We choose random sample points according to the prob-
ability density function f in two steps: Firstly, a triangle is chosen
with a probability proportional to its projected area. Secondly, a
random point on the triangle is chosen using a random linear
combination of its vertices.

A random triangle can be chosen efficiently using distribution
lists: A distribution list is built by taking the triangles in arbitrary
order and inserting a pointer to the triangle and an additional
summed-area value per triangle into the list. We start with the
projected area of the first triangle and increase the summed-area
value by the projected area of each triangle inserted. In this way,
we obtain a function which is proportional to the discrete cumula-
tive distribution function for the probability for choosing the
triangles.

To choose a random triangle, we determine a random number
chosen uniformly from the interval [0,1] using a standard pseudo
random number generator, scale the value by the total amount of
projected area, and then search for the first entry in the list with a
summed area value larger than the random value. This algorithm

chooses the triangles according to the distribution function de-
fined by the summed projected area values. It is a well known
result from statistics [19] that the inverse of a distribution function
ϕ applied to a random variable which is uniformly distributed in
the interval [0,1] creates a random variable which is distributed
according to ϕ . With a binary search, the inversion of the discrete
distribution function given by the distribution list can be per-
formed efficiently. Using this technique, we can choose a sample
point in O(logn) time for n triangles if the projected area values of
all triangles are known. To avoid a costly computation of the
projected area values, we substitute estimated values for the exact
values in the next section.

5.3 Approximation
To estimate the projected area values, the scene is divided into
groups of triangles showing a similar projection factor. The
groups are obtained by choosing them dynamically from a pre-
computed hierarchy of triangle groups. For each selected group,
the number of sample points it must receive is determined using
the product of the unprojected area of all triangles in the group
and the upper bound for the projection factor of that group. This
guarantees that the sampling density does not fall below the
minimum sample density required anywhere. For each group, a
distribution list is stored according to the unprojected area of the
triangles which is used to choose the sample points.

The division of the scene into groups must bound three factors
since the total projection factor is a product of three independent
terms: The depth factor 1/z2, the orientation factor cosβ, and the
distortion towards the borders of the image 1/cosα. The impact of
the distortion on the projection factor is quite small. For typical
values of the maximum view angle it can be ignored safely1. It
remains to bound the two other factors.

5.3.1 Spatial Classification
To bound the depth factor, we build an octree for the triangles of
the scene in a precomputation step. We can use shortcuts [3] to
constrain the storage requirements of the octree to be linear in the
number of triangles, i.e. all inner nodes, which have only one
child node, are not stored explicitly. Every node has an extended
box, which is the box of the node enlarged by a constant factor.
Triangles, which intersect the octree grid, are stored in the small-
est inner node which has an extended box that fully contains the
triangle.

Each node in the octree holds a distribution list of the unpro-
jected area values of all triangles contained in that node. For leave
nodes, the lists are computed from the triangles themselves. Inner
nodes obtain their list as a concatenation of the children's lists and
the list of their own triangles in a fixed order. In total, only one
list storing all summed area values is needed: The nodes mark up
their part of the list by using pointers to their sections (Figure 5).
Therefore, the overall storage requirement is only O(n) with n
denoting the number of triangles and the precomputation can be
performed in O(n ·logn) time.

5.3.2 Dynamic Generation of Sample Points
When the observer moves to a new position, a set of octree boxes
is chosen out of the octree. A box selection algorithm recursively
traverses the octree from the root. The recursion selects all nodes
intersecting the view frustum for which the ratio between the
minimum and the maximum depth factor is not larger than a given
constant ε (reasonable values for the depth accuracy ε are typi-

1 The deviation caused by this distortion is also bound by the spatial
subdivision used for bounding the depth factor such that even large view
angles do not cause problems.
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Figure 5: Hierarchical concatena-
tion of distribution lists
forming one global list.
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cally in the range of 1.1 -2). It can be shown that during octree
traversal only O(logτ) boxes are chosen in O(logτ) time where τ
is the relative depth range of the scene. τ is defined to be the ratio
between the smallest and the largest possible depth value in the
scene. Thus, it is always bounded by the ratio of the distance of
the front clipping plane to the diameter of the scene. The loga-
rithmic growth of the number of boxes permits processing of very
large scenes without significant costs for box processing. It can be
shown further, that the cross-sectional area of an extended frus-
tum enclosing the selected boxes exceeds that of the exact view
frustum only by a constant [28].

5.3.3 Expected Deviation
Using the spatial hierarchy only to assemble groups of objects
with similar projection factor already leads to a good approxima-
tion strategy. Recall that the increase of running time caused by a
poor approximation of the ideal distribution is proportional to the
overestimation of the projected area. To analyze the overestima-
tion of the projected area due to the neglected orientation factor
we assume that the normals of the triangles are distributed uni-
formly on the unit sphere. Under this assumption, it can be shown
by simple integration [28] that the expected value for the overes-
timation of the projection factor due to the neglected orientation
factor is 4. In the sample selection algorithm, surface sample
points with backfacing normals can be detected at small costs.
This reduces the overestimation of the orientation factor to 2.
Therefore, one could expect an approximation accuracy and thus a
runtime overhead of 2ε (with ε denoting the depth accuracy) for a
scene with roughly uniformly distributed surface orientations. In a
worst-case scenario, like a scene filled with triangles perpendicu-
lar to the view direction, an arbitrarily high overestimation can
occur. However, such cases are rarely encountered in practice.

5.3.4 Classification by Orientation
In scenes with a non-uniform distribution of the surface normals
we might use a more sophisticated classification scheme, which
takes into account the orientation of the surfaces. We divide the
unit sphere into classes of similar orientation by using a regular
grid in polar coordinates. For each class of orientation, a spatial
data structure is built as described in the preceding section. The
additional information about the orientation of the objects is taken
into account for the estimation of the projection factor.

Analytical as well as experimental results [28] show that this
strategy improves the running time only in limited special cases
with a very large projected area or a very low relative depth range.
In other cases, especially in walkthrough applications of large
environments with high relative depth range, this strategy appears
to be counterproductive, leading to longer rendering times. There-
fore, we use spatial classification only in our example renderings.

5.4 Dynamic Updates of the Scene
A dynamic version of the data structures for sample extraction can
be obtained by applying some minor modifications to the static
data structures. The main problem is that the distribution list
storing the accumulated area values cannot be updated efficiently.

It is possible to substitute a dynamically balanced search tree
for the distribution list, as shown in [28]. This leads to a dynamic
update time of O(t) with t denoting the height of the spatial octree
while preserving a sample selection time of O(log n) as in the
static case. If the scene consists of objects which are uniformly
distributed in at least one spatial dimension, the overhead of
maintaining an additional dynamically balanced search tree can be
avoided. For such scenes, the octree itself is relatively well bal-
anced and it can be used as a “distribution tree”: In each node the
summed area value of all triangles of the subtree are stored. The

sample selection algorithm now starts at the octree node which
was selected by the box selection algorithm and generates a ran-
dom number between zero and the summed area value of the last
child node. Then it descends in the tree, choosing the last child
node with a summed area value below the random value. Before
descending further, the value is adapted to the range of the area
values of the child node [28]. In this way, the correct leaf node
can be found in O(t) time. Dynamic updates can be done in O(t)
time as well: After adding or deleting a node from the octree in
O(t) time an additional traversal from the leaf affected to the root
node is necessary to correct the summed area values.

For practical applications, this variant is probably the more in-
teresting one, because although using balanced search trees is
asymptotically faster, they introduces a considerable overhead.
Furthermore, the implementation of the second variant is much
simpler and as the height of the octree is often not very large for
practical scenes, the increase of the running time of the sample
selection algorithm to O(t) may be acceptable. The experimental
results (Section 8.4) confirm a good behavior in practice: For
scenes with uniformly distributed objects, the octree based tech-
nique is nearly as fast as distribution lists for choosing sample
points.

6 TOTAL RUNNING TIME
Summing up the running time for the image reconstruction and
for choosing sample points, we obtain the following result:

Let S be a three dimensional scene consisting of n triangles
with surface normals uniformly distributed on the unit sphere, a
the projected area of the scene, v the resolution of the rendered
image, and τ the ratio between the diameter of the scene and the
minimum view distance. Then the scene can be rendered in
O(a·log v·logn + logτ) ⊆ O(a·log n) time using O(n) space for
data structures which can be precomputed in O(n·log n) time.
Insertion and removal of triangles can be performed in O(t) time
where t denotes the height of the octree build for the scene. In all
pixels of the image which are fully covered by foreground objects
and in which the depth intervals of foreground and background
objects are disjoint, a correct image can be obtained with an arbi-
trarily high probability.

“Landscape scenes” are an important special case which can
be roughly described as a disc with radius r in a plane on which
objects are placed uniformly with limited height and uniformly
distributed surface normal orientations. Typical examples are city
scenes or natural landscapes. The projected area of such a scene
grows logarithmically with r and the number of objects grows
with r2. If such a scene is rendered with the randomized z-buffer
algorithm without any occlusion culling, we obtain a total running
time of O(log2 r). This is a big improvement in comparison to the
conventional z-buffer algorithm, which would require Θ(r2).

7 ENHANCEMENTS

7.1 Using Conventional z-Buffer
Rendering for Large Triangles

For triangles which cover more than a small fraction of a pixel in
the image it is not efficient to draw them using the random sam-
pling algorithm. Instead it would be more efficient to use the
conventional z-buffer algorithm. This can be faster by up to more
than three orders of magnitudes for triangles with a large pro-
jected area.

To make use of this, all triangles which would receive more
than a few sample points must be identified dynamically. The
amount of sample points a triangle receives depends on the esti-
mated projection factor (Section 5.3) and the unprojected area of
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the triangle. The estimated projection factor is known exactly, it is
determined by the box selection algorithm. To estimate the second
factor for groups of triangles, we use classes of triangles with a
similar area. Each class holds triangles with area values which
differ only by a constant factor from each other. Therefore, the
size of the classes grows exponentially and O(log A) classes are
necessary if A is the ratio between the smallest and the largest
area value of a triangle in the scene. For each class, a separate
data structure for the classification of the projection factor is built.
The box selection algorithm described in Section 5.3.2 has to be
modified: all selected boxes which contain triangles with a pro-
jected area smaller than a given threshold are scheduled for sam-
pling. The triangles stored in the other boxes are passed to a
conventional z-buffer renderer which uses the same depth- and
framebuffer as the point sample renderer. Setting a conservative
value for the threshold value ensures that the rendering speed
never drops below that of a conventional z-buffer renderer.

The overhead caused by the introduction of multiple area
classes is small. In contrast to classification by orientation, only a
one-dimensional domain has to be subdivided. This is done in
exponentially increasing spacing. Thus, the number of area
classes is usually quite small. Experiments prove that the box
processing times remain reasonably short (in practice, the number
of boxes is enlarged by a factor of about 3-4).

7.2 Sample Caching
Our point sample rendering algorithm offers two particularly
useful opportunities for optimizations: The binary search in the
distribution lists causes a random memory access pattern unfavor-
able for modern microprocessor architectures. Additionally, the
randomized point selection introduces an oversampling factor to
the number of samples which grows with the natural logarithm of
the display resolution (about 11-14 for typical resolutions). Utiliz-
ing temporal coherence, we can avoid both problems by applying
a sample caching mechanism.

Before using sample points for image reconstruction, they are
stored in a sample cache. In this way, they can be reused for
several frames, as long as the sampling density does not change
by more than a constant value. To remove unnecessary oversam-
pling, the cached sample points are quantized to a regular three-
dimensional grid in object space and duplicate points are re-
moved. The grid spacing is chosen just small enough to safely
cover all pixels on the screen, i.e. the maximum projected size of
a grid block is √


3 times the side length of a pixel (or splat, respec-

tively). To minimize cache reconstruction efforts, multiple caches
are used for regions of the scene in which the distance to the
observer varies only by a constant value. This is realized by asso-
ciating the caches with the octree boxes selected by the sample
selection algorithm since these boxes always have this property.
We do not use classification by orientation or backface culling so
that the validity of a cached sample set depends only on the dis-
tance to the observer. Sample caches are deleted according to a
least-recently-used algorithm, which guarantees fixed memory
consumption.

Experiments show that the caching strategy can improve the
rendering speed by an order of magnitude. The speedup depends
on the movement of the observer: If the observer moves at a
moderate speed, only a few cache builds are necessary and almost
the full speedup is obtained. If the observer moves at a very high
speed so that all geometry has to be resampled in each frame no
speedup can be achieved. In practice, the caching scheme in-
creases the rendering speed from a few seconds per image to
interactive rendering times. In this way, the flexibility and low
storage overhead of the random sampling algorithm can be com-
bined with the high rendering speed of the deterministic methods

like [18,22]. However, these provide the opportunity to apply
expensive prefiltering techniques [18] to the point samples in the
preprocessing step which cannot be accomplished on-the-fly.

7.3 Scene Encoding using Scene Graphs
Since the running time of the randomized z-buffer algorithm
shows a very weak dependence on the number of triangles in the
scene, the scene complexity which can be handled is several
orders of magnitude higher than that of typical input scenes for
conventional algorithms. Therefore, the main barrier for the dis-
play of highly detailed scenes is the memory consumption of the
scene description. To be able to encode meaningful scenes of high
complexity, we have adopted a scene graph based hierarchical
instantiation scheme: The scene is described by a scene graph as
found in many software libraries [29]. A separate octree is con-
structed for all nodes with multiple incoming references. If such a
reference is inserted into the parent octree, a pointer to the sepa-
rate octree of the referenced object is stored along with a trans-
formation matrix instead of all triangles belonging to the object.
This scheme is carried on hierarchically so that scenes of high
complexity can be encoded.

As every instantiation layer requires one additional transfor-
mation of the sample point during the sample selection stage, the
running time is increased by a constant value for each layer used.
Experiments showed additional costs of 30% of the running time
without instantiation per extra layer of instantiation for a pure
software implementation.

8 IMPLEMENTATION AND RESULTS
To examine image quality and rendering performance of the
randomized z-buffer in practice, we used a prototype implementa-
tion developed in C++ using OpenGL for low-level rendering. All
results were obtained using an 800Mhz Athlon processor system
with 512MB of main memory and an nVidia GeForce-2 GTS
graphics board. The z-buffer renderer used for comparison was
not optimized, in particular it did not make use of triangle strips in
all possible cases. However, the implementation of the random-
ized z-buffer also leaves some room for optimization so that the
comparison is still reasonable.

8.1 Scene Complexity
We used a chessboard explicitly modeled of black and white
triangles as a test scene and increased the number of squares on
the board to measure the dependence of the running time on the
scene complexity. These settings ensured that the projected area
and other geometric parameters remained constant for all levels of
detail. In this way, the orthogonality of the results was preserved.
The scene was rendered using point sample rendering only. Sam-
ple caching and the automatic invocation of conventional z-buffer
rendering were disabled.

Figure 6 depicts the running time for an exponentially increas-
ing scene complexity. The randomized z-buffer shows a roughly
linear increase in running time proving the logarithmic growth
with the number of triangles. The discontinuities show up at
points where additional instantiation layers had to be inserted into
the scene graph. Overall, the rendering time was only increased
by about a factor of 4.6 between 2048 triangles and 1014 triangles
and most of the costs are spent for transforming sample points in
instances. This clearly shows the highly output-sensitive character
of the running time. It is also apparent that pure random point
sample rendering leads to a high overhead for low complexity
scenes in comparison with conventional z-buffer rendering. This
motivates the conventional z-buffer rendering of triangles with
large projected area as described in Section 7.1.
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8.2 Sampling Parameter Optimization
The main parameter which influences the point sample generation
is the depth accuracy ε. Choosing the parameter ε is a trade-off
between box selection time and image reconstruction time. It can
be shown analytically [28] that on the one hand the number of
boxes selected by the box selection algorithm grows rapidly with
decreasing ε, by Θ((√

ε -1)-3). On the other hand, the overestimation
of the projected area increases with Θ(√

ε) for uniformly distrib-
uted objects. The sum of these two monotonic costs functions
form an absolute minimum for some value ε 0. It depends on the
projected area, which scales the reconstruction costs, and on the
relative depth range τ, which scales the box selection costs.

Figure 7 depicts measured running times for an example
scene, which confirm the theoretical analysis: The trade-off be-
tween the running times of the two steps of the randomized z-
buffer algorithm is clearly visible. Furthermore, a strong growth
of the total running time for small values of ε in contrast to a
moderate growth for large values can be verified. For practical
applications, it would be desirable to determine ε 0 automatically.
As there is only one local minimum, this could be easily accom-
plished using a conventional minimum search algorithm.

8.3 Combination with Conventional
z-Buffer Rendering

The combination of conventional z-buffer rendering with point
sample rendering as described in Section 7.1 is controlled by two
parameters: the maximum area ratio between the smallest and the
largest triangle in an area class and the threshold value for the
estimated projected area at which conventional z-buffer rendering
is invoked. In our experiments, the maximum area ratio had little
impact on the running time. Values of 2 to 64 led to similar re-
sults. The reason for this is that firstly, the accuracy of the estima-
tion of the projected area has little influence on the running time
as it affects only a small group of triangles with an area close to
the threshold value. Secondly, the value for the area ratio does not
affect the total number of boxes to be processed severely because
the absolute number of area classes always remains quite small.
The other parameter, the optimal value for the threshold at which
conventional rendering is used, was approximately equal to the
splat size divided by the oversampling ratio d 2/ln v, as theoreti-
cally expected. It was independent of the scene properties and the
camera position.

8.4 Dynamic Updates
We implemented the variant of the dynamic distribution tree
which stores additional summed area values in the nodes of the
octree as described in Section 5.4. To test dynamic scene editing
we used the city scene from Section 8.6 replicated on a quadratic
grid obtaining a scene consisting of 1.2 million triangles. We did
not use any instantiations because dynamic operations are always
performed within one of the separated octrees of an instance and
the algorithm does not distinguish between triangle entries and
instance entries. Thus, inserting or removing a complex object
with a separate spatial data structure requires the same efforts as a
single triangle. We inserted a model consisting of 5804 triangles
into the scene triangle by triangle and removed it again. Rebuild-
ing the octree from scratch took about 84 seconds in the static
case while the dynamic update took only 570 msec
(98µsec/triangle). This allows for modifications of parts of the
scene typical for interactive editing applications. Although in this
implementation the distribution tree for sample selection is not
guaranteed to be balanced optimally, we did not observe a loss of
performance of more than 30% for any of our example scenes (in
comparison to the static case). Hence, this turns out not to be a
limitation in practice.

8.5 Sample Caching
If hardware accelerated geometric transformations are available,
as on our test platform, the sample generation turns out to be the
bottleneck of the algorithm. Thus, we obtain a significant speedup
if cached sample sets can be used as described in Section 7.2. We
applied the caching strategy to the example renderings of the next
section: For high-resolution reconstruction, where the rendering
costs are not dominated by box selection time and rendering of
large triangles, rendering is speeded up by a factor of about 10-14.
Quantization of the samples to a regular grid accounts for a factor
of about 1.5-2 within this factor.

Figure 8 shows the rendering times during a walkthrough for
an example scene with uniformly distributed tree models consist-
ing of 9×108 triangles, similar to that shown in Figure 9b. We
obtained an average speedup factor of 7.1 when sample caching
was activated, starting with empty caches. The frame rate deviated
from the average by ±15% due to cache update operations. If the
same walkthrough is performed with precomputed cached sample
sets, we obtain a speedup factor of 11.6, i.e. in this example, the
cache updates account for 40% of the running time.

Figure 6: Running time dependent on the scene
complexity. The rendering time of our algo-

rithm grows roughly logarithmically with the
scene complexity.

Figure 7: Trade-off between box selection
and reconstruction time. The global minimum
can be easily obtained since both box selection
and reconstruction time are monotonic func-

tions of the depth accuracy εεεε.

Figure 8: Rendering time for full rendering,
sample caching and caching with filled caches:

The fully dynamic sample caching strategy
speeds up rendering by a factor of about 7.
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8.6 Example Renderings
To show the benefits of the randomized z-buffer algorithm, we
applied it to four different example scenes as shown in Figure 9.
Table 1 summarizes the results.

Replicated trees: To demonstrate the ability of handling
scenes of extreme complexity we used a scene with 5.9×109 in-
stances of complex tree models consisting of about 23,300 trian-
gles each replicated on a quadratic grid. A conventional z-buffer
rendering would have taken about 160 days (assuming an optimis-
tic triangle render rate of 107 triangles per second). The random-
ized z-buffer produces good results after a few seconds. Figure 9a
shows a per pixel reconstruction and a Gaussian reconstruction.
Applying sample caching, the per-pixel reconstruction can be
computed at nearly interactive frame rates (see Table 1). The anti-
aliased reconstruction took two minutes to compute and shows no
aliasing and only little noise artifacts. Especially the far field
demonstrates the ability of random point sampling to produce a
natural visual impression of a highly detailed geometry.

Landscape scene: A visually more appealing model consist-
ing of about 410 million triangles was constructed by placing
instances of the tree models on a fractal landscape (Figure 9c). It
was rendered using sample caching in 71 msec (splatting, d=5) to
410 msec (per pixel reconstruction, d =1). For walkthroughs, the
rendering times were moderately increased by a small offset,
depending on the speed of movement. By replacing the static

illumination model (which was used in all other examples as well)
by a more expensive view dependent Phong model, a high quality
rendering (Figure 9b) was obtained in 19 seconds. It shows no
visually perceivable differences to a conventional z-buffer render-
ing which took about 9 minutes.

“Happy Buddha” mesh: Some approaches which perform
well on unstructured scenes like forest scenes have severe prob-
lems on smooth meshes [5]. However, our algorithm delivers
correct results in such cases, too: Figure 3 shows rendering results
for the well-known “Happy Buddha” mesh (taken from [10]) in
comparison to traditional z-buffer rendering. The image quality at
small splat size (d=2) is nearly indistinguishable from a conven-
tional z-buffer rendering. Using sample caching, this result could
be obtained in 30 msec, which is much faster than conventional z-
buffer rendering. However, it should be noted that higher speed-
ups can be achieved using mesh simplification (see e.g. [10])
since this scene, in contrast to our other examples, still contains a
large amount of redundant triangles.

City scene: The city scene consists of a large amount of in-
dependent objects which are hard to handle for approaches like
mesh-simplification [20]. The 3.4×108 triangles of the scene vary
significantly in size so that automatic invocation of conventional
z-buffer rendering for large triangles is particularly useful. A
conventional z-buffer rendering took 8 minutes and 43 seconds.
Using the randomized z-buffer we achieved up to 5-9 frames per
second, depending on the splat size and the speed of movement of

(a) Replicated trees (1.4×1014 triangles), left: per pixel reconstruction
(9.1 sec without caching), right: Gaussian reconstruction (121 sec).

(b) Landscape scene (4.1×108 triangles), per-pixel reconstruction (d =1),
Phong illumination model, rendering time: 19.2 sec (without caching)

(c) Landscape scene (4.1×108 triangles), splatting, d =2,
diffuse illumination model, rendering time: 262 msec

(d) City model (3.4×108 triangles), left: randomized z-buffer (d =1),
rendering time 422 msec, right: z-buffer, rendering time 8 min 43 sec

Figure 9: Example renderings, rendering times for (c), (d) were obtained using sample caching. See Table 1 for details.
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the observer, while still delivering a good image quality. Figure
9d compares conventional z-buffer rendering results to those of
the randomized z-buffer. Note that in contrast to occlusion culling
techniques the rendering speed does not drop if the scene is ren-
dered from a higher point of view.

9 CONCLUSIONS AND FUTURE WORK
We presented a new output-sensitive rendering algorithm, the
randomized z-buffer algorithm. Its rendering time grows only
logarithmically with the number of triangles. Therefore, the algo-
rithm can be applied to highly complex scenes. Experiments show
that scenes consisting of several billion triangles can be explored
at interactive framerates with an image quality comparable to that
of conventional rendering methods. Our algorithm is applicable to
more general scenes than mesh simplification-based approaches.
It avoids the storage and preprocessing overhead of image-based
rendering approaches. Our algorithm also improves on recent
point sample based simplification algorithms [18, 22]: The ran-
domized z-buffer algorithm guarantees a memory consumption
linear in the number of triangles without restrictions to the sam-
pling resolution, allows for efficient dynamic updates, and is
never less efficient than conventional z-buffer rendering.

There are some possibilities for extending the methods de-
scribed in this paper in future work:

Occlusion culling: It may be possible to make use of statisti-
cal information from the sampling process to cull occluded por-
tions of the scene by detecting octree boxes which yield samples
that are often rejected by the z-buffer test.

Modeling: A compact encoding is a key requirement for
handling complex scenes. In principle the randomized sampling
approach is not limited to triangular primitives. Thus, one should
consider the usage of higher order primitives like parametric
spline surfaces or simple generative models. Furthermore, it
would be desirable to examine more sophisticated instantiation
schemes. Subdivision in parameter space for the classification by
projection factor and parametric distortion could serve as a basic
technique to implement enhanced modeling techniques.
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rendering time (new sample set) rendering time (sampling from cache)
Scene

complexity
[# triangles]

memory
consumption

precomp.
time

Rendering time
conv. z-buffer d = 1 d = 2 d = 5 d = 1 d = 2 d = 5

“Happy Buddha” 1,085,634 163 MB 129 sec 1.18 sec 1.54 sec 0.44 sec 0.096 sec 0.11sec 0.030sec 0.007sec

city scene 339,500,000 24,8MB 4 sec 8 min 43 sec 5.0 sec 1.5 sec 0.52 sec 0.42sec 0.19sec 0.11sec

landscape scene (diffuse) 410,501,184 137 MB 123 sec 7 min 51 sec 6.1 sec 1.8 sec 0.64 sec 0.41sec 0.26sec 0.071sec

replicated trees 1.37×1014 36MB 21 sec > 160 d(est.) 9.1 sec 4.6 sec 1.3 sec 0.80sec 0.43sec 0.33sec

Table 1: rendering times for different scenes and different splat sizes d at a resolution of 640 ×××× 480 pixels.


